Spectral analysis of ranking algorithms

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Recap: HITS algorithm

• Evaluate hub and authority scores
• Apply Authority update to all nodes:
 – $\text{auth}(p) = \text{sum of all } \text{hub}(q) \text{ where } q \rightarrow p \text{ is a link}$
• Apply Hub update to all nodes:
 – $\text{hub}(p) = \text{sum of all } \text{auth}(r) \text{ where } p \rightarrow r \text{ is a link}$
• Repeat for k rounds
Adjacency matrix

- Example

```
\begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
```
Hubs and authority scores

• Can be written as vectors h and a

• The dimension (number of elements) of the vectors are n
Update rules

• Are matrix multiplications

\[h \leftarrow M \alpha \]
• Hub rule for i : sum of a-values of nodes that i points to:

\[h \leftarrow Ma \]

• Authority rule for i : sum of h-values of nodes that point to i:

\[a \leftarrow M^T h \]
Iterations

• After one round:

\[a^{(1)} = M^T h^{(0)} \]

\[h^{(1)} = M a^{(1)} = M M^T h^{(0)} \]

• Over k rounds:

\[h^{(k)} = (M M^T)^k h^{(0)} \]
Convergence

• Remember that h keeps increasing
• We want to show that the normalized value
 \[\frac{h^{(k)}}{c^k} \]
 converges to a vector of finite real numbers as k goes to infinity
• If convergence happens, then there is a c:
 \[(MM^T)h^{(*)} = ch^{(*)} \]
Eigen values and vectors

\[(MM^T)h^{(*)} = ch^{(*)}\]

- Implies that for matrix \((MM^T)\)
- \(c\) is an eigen value, with
- \(h^{(*)}\) as the corresponding eigen vector
Proof of convergence to eigen vectors

• Useful Theorem: A symmetric matrix has orthogonal eigen vectors.
 – They form a basis of n-D space
 – Any vector can be written as a linear combination
• \((MM^T)\) is symmetric
• For matrix P with all positive values, Perron’s theorem says:
 – A unique positive real valued largest eigenvalue c exists
 – Corresponding eigen vector y is unique and has positive real coordinates
 – If $c=1$, then $P^k x$ converges to y
Now to prove convergence:

• Suppose sorted eigen values are:

\[|c_1| \geq |c_2| \geq \cdots \geq |c_n| \]

• Corresponding eigen vectors are:

\[z_1, z_2, \ldots, z_n, \]

• We can write any vector \(x \) as

\[x = p_1 z_1 + p_2 z_2 + \cdots + p_n z_n \]

• So:

\[
(MM^T)x = (MM^T)(p_1 z_1 + p_2 z_2 + \cdots + p_n z_n) \\
= p_1 MM^T z_1 + p_2 MM^T z_2 + \cdots + p_n MM^T z_n \\
= p_1 c_1 z_1 + p_2 c_2 z_2 + \cdots + p_n c_n z_n,
\]
\[(MM^T)x = (MM^T)(p_1z_1 + p_2z_2 + \cdots + p_nz_n)\]
\[= p_1MM^Tz_1 + p_2MM^Tz_2 + \cdots + p_nMM^Tz_n\]
\[= p_1c_1z_1 + p_2c_2z_2 + \cdots + p_nc_nz_n,\]

- After k iterations:
 \[(MM^T)^k x = c_1^kp_1z_1 + c_2^kp_2z_2 + \cdots + c_n^kp_nz_n\]

- For hubs:
 \[h^{(k)} = (MM^T)^k h^{(0)} = c_1^kq_1z_1 + c_2^kq_2z_2 + \cdots + c_n^kq_nz_n\]

- So:
 \[\frac{h^{(k)}}{c_1^k} = q_1z_1 + \left(\frac{c_2}{c_1}\right)^k q_2z_2 + \cdots + \left(\frac{c_n}{c_1}\right)^k q_nz_n\]

- If \(|c_1| > |c_2|\), only the first term remains.

- So, \[\frac{h^{(k)}}{c_1^k}\] converges to \[q_1z_1\]
Properties

• The vector q_1z_1 is a simple multiple of z_1
 – A vector essentially similar to the first eigen vector
 – Therefore independent of starting values of h
• q_1 can be shown to be non-zero always, so the scores are not zero
• Authority score analysis is analogous
Pagerank Update rule as a matrix derived from adjacency

\[\mathbf{r} \leftarrow \mathbf{N}^T \mathbf{r} \]
• Scaled pagerank:

\[r \leftarrow \tilde{N}^T r \]

• Over k iterations:

\[r^{(k)} = (\tilde{N}^T)^k r^{(0)} \]

• Pagerank does not need normalization.

\[\tilde{N}^T r^{(*)} = r^{(*)} \]

• We are looking for an eigen vector with eigen value=1
Random walk interpretation

• The pagerank “Fluid” from a source s spreads to neighbors and their neighbors
• Take the small quantity that ends at node x
• We can trace back the walk that it took
• This is a random walk, since at each step it was sent to a random neighbor
• Thus the fluid dividing and spreading randomly is equivalent to
 – Several small particles of fluid starting at s and doing a random walk
Random walks

• A random walker is moving along random directed edges

• Suppose vector b shows the probabilities of walker currently being at different nodes

• Then vector $N^T b$ gives the probabilities for the next step
Random walks

• Thus, pagerank values of nodes after k iterations is equivalent to:
 – The probabilities of the walker being at the nodes after k steps

• The final values given by the eigen vector are the steady state probabilities
 – Note that these depend only on the network and are independent of the starting points
History of web search

• YAHOO: A directory (hierarchic list) of websites
 – Jerry Yang, David Filo, Stanford 1995

• 1998: Authoritative sources in hyperlinked environment (HITS), symposium on discrete algorithms
 – Jon Kleinberg, Cornell

• 1998: Pagerank citation ranking: Bringing order to the web
 – Larry Page, Sergey Brin, Rajeev Motwani, Terry Winograd, Stanford techreport