Metrics and network cosntruction

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Metric

- A distance measure d on a set X
- Satisfies usual intuitions, triangle inequality

Metrics

- Metrics are Important because:
 - Metrics are used to construct networks
 - Networks have metrics that determine their properties

Euclidean metric

- 1-D
 - Straight line (think x-axis)

- 2-D
 - Plane

Distance measure in dimension d:

$$d(u,v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_d - v_d)^2}$$

Non Euclidean metrics

A lot of maths for Euclidean metrics

What are examples of non-Euclidean metrics?

Non-euclidean metrics

Realistic shapes. With bends, and cycles.

• L_p metrics

$$d(u,v) = \sqrt[p]{(u_1 - v_1)^p + (u_2 - v_2)^p + \dots + (u_d - v_d)^p}$$

L₁ metric

Manhattan distances

$$d(u, v) = |u_x - v_x| + |u_y - v_y|$$

L_{∞} Metric

Largest component over dimensions

$$d(u, v) = \lim_{p \to \infty} \sqrt[p]{(u_x - v_x)^p + (u_y - v_y)^p}$$

$$d(u, v) = \max(|u_x - v_x|, |u_y - v_y|)$$

The undirected shortest path distance

- Is a metric
- In unweighted graphs, all values are integers

Graph Embedding

- Map the vertices V to points in the plane
 - (or some other space)

 Usually, different vertices are mapped to different points

Different distances

- What is the distance between u and v?
- Possibility 1 (Embedding or extrinsic distance):
 - Distance in the embedded space
 - E.g. Euclidean distance
- Possibility 2 (Intrinsic distance):
 - Distance in the graph
 - The length of shortest path
- Possibility 3 (Intrinsic distance):
 - Weighted distance in the graph
 - Weight/length given by embedding

Where do metrics come from?

- Possibility 1:
 - We are given weights/lengths of edges
- Possibility 2a:
 - Vertex locations are given. Eg. Mobile phone locations
- Possibility 2b:
 - We are given real valued features like age, salary, etc
 - We can use these as dimensions and compute distances.

- We will often use and compare multiple metrics on the same network
- E.g. on a map
 - The Eulcidean distance between nodes (junctions)
 - The distance along road networks
 - The travel time at busy hours etc
- E.g. For people in a social network
 - The shortest path distance on the unweighted graph
 - The shortest path, where weights are given according to strength of friendship
 - Distance between nodes after an embedding in k-dimensional space
 - Distance after embedding by (age, salary, location)
 - Distance on the UDG or k-NN after embedding by some features...
- (Which of these are intrinsic and which are extrinsic?)

Making networks from metrics

- Unit disk graphs:
 - Consider vertices in the plane (like wireless nodes)
 - Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)
 - Applies generally to higher dim (Unit ball graphs)
 - Connect two nodes if they are within a given distance

Network Metric: Shape of the data

Intrinsic metric determined by shortest paths

k-NN graphs

- For each vertex, find k nearest neighbors
 - Connect edges to all k nearest neighbors
 - Variants:
 - Connect all k-NN edges
 - Connect only if both vertices are k-NN of each-other

Network construction

 Given any dataset with distances between items, we can construct a network

Finding distance between two nodes in a graph

Breadth first search (for unweighted graphs)

Dijkstra's shortest path algorithm (for weigted graphs)

- All pairs shortest paths
 - Floyd Warshall Algorithm