Metrics and network cosntruction

 Social and Technological NetworksRik Sarkar

University of Edinburgh, 2019.

Metric

- A distance measure d on a set X
- Satisfies usual intuitions, triangle inequality

Metrics

- Metrics are Important because:
- Metrics are used to construct networks
- Networks have metrics that determine their properties

Euclidean metric

- 1-D
- Straight line (think x-axis)
- 2-D
- Plane
- Distance measure in dimension d:
$d(u, v)=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{d}-v_{d}\right)^{2}}$

Non Euclidean metrics

- A lot of maths for Euclidean metrics
- What are examples of non-Euclidean metrics?

Non-euclidean metrics

Hyperbolic plane
Negative curvature

Realistic shapes. With bends, and cycles.

- L_{p} metrics

$$
d(u, v)=\sqrt[p]{\left(u_{1}-v_{1}\right)^{p}+\left(u_{2}-v_{2}\right)^{p}+\cdots+\left(u_{d}-v_{d}\right)^{p}}
$$

L_{1} metric

- Manhattan distances

$$
d(u, v)=\left|u_{x}-v_{x}\right|+\left|u_{y}-v_{y}\right|
$$

L_{∞} Metric

- Largest component over dimensions

$$
\begin{aligned}
& d(u, v)=\lim _{p \rightarrow \infty} \sqrt[p]{\left(u_{x}-v_{x}\right)^{p}+\left(u_{y}-v_{y}\right)^{p}} \\
& d(u, v)=\max \left(\left|u_{x}-v_{x}\right|,\left|u_{y}-v_{y}\right|\right)
\end{aligned}
$$

The undirected shortest path distance

- Is a metric
- In unweighted graphs, all values are integers

Graph Embedding

- Map the vertices V to points in the plane
- (or some other space)
- Usually, different vertices are mapped to different points

Different distances

- What is the distance between u and v ?
- Possibility 1 (Embedding or extrinsic distance):
- Distance in the embedded space
- E.g. Euclidean distance
- Possibility 2 (Intrinsic distance):

- Distance in the graph
- The length of shortest path
- Possibility 3 (Intrinsic distance):
- Weighted distance in the graph
- Weight/length given by embedding

Where do metrics come from?

- Possibility 1 :
- We are given weights/lengths of edges
- Possibility 2a:
- Vertex locations are given. Eg. Mobile phone locations
- Possibility 2b:
- We are given real valued features like age, salary, etc
- We can use these as dimensions and compute distances.
- We will often use and compare multiple metrics on the same network
- E.g. on a map
- The Eulcidean distance between nodes (junctions)
- The distance along road networks
- The travel time at busy hours etc
- E.g. For people in a social network
- The shortest path distance on the unweighted graph
- The shortest path, where weights are given according to strength of friendship
- Distance between nodes after an embedding in k-dimensional space
- Distance after embedding by (age, salary, location)
- Distance on the UDG or k-NN after embedding by some features...
- (Which of these are intrinsic and which are extrinsic?)

Making networks from metrics

- Unit disk graphs:
- Consider vertices in the plane (like wireless nodes)
- Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)

- Applies generally to higher dim (Unit ball graphs)
- Connect two nodes if they are within a given distance

Network Metric: Shape of the data

- Intrinsic metric determined by shortest paths

k-NN graphs

- For each vertex, find k nearest neighbors
- Connect edges to all k nearest neighbors
- Variants:
- Connect all k-NN edges
- Connect only if both vertices are k-NN of each-other

Network construction

- Given any dataset with distances between items, we can construct a network

Finding distance between two nodes in a graph

- Breadth first search (for unweighted graphs)
- Dijkstra's shortest path algorithm (for weigted graphs)
- All pairs shortest paths
- Floyd Warshall Algorithm

