Metrics and network construction
Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Metric

• A distance measure d on a set X
• Satisfies usual intuitions, triangle inequality
Metrics

• Metrics are Important because:
 – Metrics are used to construct networks
 – Networks have metrics that determine their properties
Euclidean metric

• 1-D
 – Straight line (think x-axis)

• 2-D
 – Plane

• Distance measure in dimension d:

\[d(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_d - v_d)^2} \]
Non Euclidean metrics

• A lot of maths for Euclidean metrics

• What are examples of non-Euclidean metrics?
Non-euclidean metrics

Sphere
Positive curvature

Hyperbolic plane
Negative curvature

Realistic shapes. With bends, and cycles.
• **L_p metrics**

\[d(u, v) = \sqrt[p]{(u_1 - v_1)^p + (u_2 - v_2)^p + \cdots + (u_d - v_d)^p} \]
L₁ metric

• Manhattan distances

\[d(u, v) = |u_x - v_x| + |u_y - v_y| \]
L_∞ Metric

• Largest component over dimensions

\begin{align*}
d(u, v) &= \lim_{p \to \infty} \sqrt[p]{(u_x - v_x)^p + (u_y - v_y)^p} \\
d(u, v) &= \max(|u_x - v_x|, |u_y - v_y|)\end{align*}
The undirected shortest path distance

- Is a metric
- In unweighted graphs, all values are integers
Graph Embedding

• Map the vertices V to points in the plane
 – (or some other space)

• Usually, different vertices are mapped to different points
Different distances

• What is the distance between u and v?
• Possibility 1 (Embedding or extrinsic distance):
 – Distance in the embedded space
 • E.g. Euclidean distance
• Possibility 2 (Intrinsic distance):
 – Distance in the graph
 • The length of shortest path
• Possibility 3 (Intrinsic distance):
 – Weighted distance in the graph
 • Weight/length given by embedding
Where do metrics come from?

• Possibility 1:
 – We are given weights/lengths of edges

• Possibility 2a:
 – Vertex locations are given. Eg. Mobile phone locations

• Possibility 2b:
 – We are given real valued features like age, salary, etc
 – We can use these as dimensions and compute distances.
• We will often use and compare multiple metrics on the same network

• E.g. on a map
 – The Euclidean distance between nodes (junctions)
 – The distance along road networks
 – The travel time at busy hours etc

• E.g. For people in a social network
 – The shortest path distance on the unweighted graph
 – The shortest path, where weights are given according to strength of friendship
 – Distance between nodes after an embedding in k-dimensional space
 – Distance after embedding by (age, salary, location)
 – Distance on the UDG or k-NN after embedding by some features...

• (Which of these are intrinsic and which are extrinsic?)
Making networks from metrics

• Unit disk graphs:
 – Consider vertices in the plane (like wireless nodes)
 – Connect two vertices by an edge if they are within distance 1 of each other. (within transmission distance)
 – Applies generally to higher dim (Unit ball graphs)
 – Connect two nodes if they are within a given distance
Network Metric: Shape of the data

- Intrinsic metric determined by shortest paths
k-NN graphs

- For each vertex, find k nearest neighbors
 - Connect edges to all k nearest neighbors
- Variants:
 - Connect all k-NN edges
 - Connect only if both vertices are k-NN of each other
Network construction

• Given any dataset with distances between items, we can construct a network
Finding distance between two nodes in a graph

- Breadth first search (for unweighted graphs)
- Dijkstra’s shortest path algorithm (for weighted graphs)
- All pairs shortest paths
 - Floyd Warshall Algorithm