Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Course specifics

- Lectures
 - Tuesdays 12:10 13:00
 - 1 George square G8: Gaddum lecture theatre.
 - Fridays 12:10 13:00
 - Geography 2.13.
- Exam : 60%, Coursework project 40%.
- Exam:
 - To be held in April/May
- TA: Lauren Watson.

Today

- Why study networks?
- Relations to machine learning
 - Why networks are important in machine learning and vice versa
- Course page
 - Notes, exercises and course materials
- Course structure and coursework project
- Prerequisites
- Programming

Network or Graph

- A set of entities or nodes: V
- A set of egdes: E
 - Each edge e = (a, b) for nodes a, b in V
 - An edge (a,b) represents existence of a relation or a *link* between a and b

Networks exist everywhere

• What are some different types of networks?

Example: Social networks

- Facebook, Linkedin, twitter..
- Nodes are people
- Edges are friendships
- The network determines society, communities, etc..
- How information flows in the society
- How innovation/influence spreads
- Who are the influential people
- Predict behaviour
- Make recommendations

World wide web

- Links/edges between web pages
- Determines availability of information
- Important pages have more links pointing to them
- Network analysis is the basis of search engines

Computer networks

- What can we say about the internet?
- How reliable are computer networks?

Electricity grid

- Network of many nodes, redistributing power
- Critical infrastructure
- Failure can disrupt ... everything
- Small local failures can spread
 - Load redistributes
 - Trigger a casdade of failures
- Network strcuture is critical

From Barabasi: Network Science

Road network and transportation

- Mobility patterns of people
 Location data
- Suggest bus routes
- Suggest travel plans
- Traffic engineering
- Increasing importance
 - More vehicles
 - Self driving cars

Linguistic networks

- Networks of words
- Show similarities between languages
- Show differences between languages
- Document analysis

Business and management and marketing

- Business
 - What makes a restaurant successful?
 - Nearby restaurants?
 Community of customers?
- Marketing/management
 - Who are the influential people in spread of ideas/products?

Other networks

- Chemistry/biology
 - Interactions between chemicals
 - Interactions between species
 - Ecological networks
 - Networks of neurons, blood circulation
- Finance/economies
 - Dependencies between institutions
 - Resilience and fragility
- Neural (Brain) networks

Network analysis in data science

- Data getting more complex
- Many types of data are not points in R^d space
 - Data carry relations networks
 - Simple classification inadequate
 - Network knowledge can make ML more accurate, efficient
 - E.g. data from social network or social media, www, IoT and sensor networks, road networks

Machine learning

 Finding groups of points

 Separating groups of points

Machine learning

 Finding groups of points

 Separating groups of points

Challenge: ML on networks

- How do we do machine learning when the data is not in space, but in a network?
 - What does clustering mean?
 - What does separation mean?

Challenge: ML on networks

- Network data shows up everywhere
- We need to generalise ML to work on networks for more advanced operations

 The maths that works in Euclidean (R^D) space has to be modified to work on graphs.

Networks for ML

- Another perspective:
 - Networks are useful for ML
- Example
 - Clustering with DBSCAN
 - Connect points that are close to each other to make graph
 - Take connected components to get clusters
 - Easily finds oddly shaped clusters
- Networks are good for determining the *shape* of data

Networks for ML

- Used in
 - Clustering
 - Robotics
 - Motion planning

—

Topics

- Networks, ML and algorithms
 - Community detection (clustering)
 - Predicting unknown values at nodes (classification)
 - Kernel methods
 - Graph kernels
 - Influence maximisation
 - Finding representative items and sampling
- Properties of common networks and models
 - Power law networks
 - Small world graphs (six degrees of separation etc)
 - Web graphs
 - Epidemics and cascades
- Theory, maths, statistics
 - Properties of random graphs and other common types of graphs
 - Metric spaces
 - Expansion, growth etc
- This is an advanced course to help research and innovation. We will try to balance between covering a range of interesting topics and studying them in depth

Web page

- Web page
 - <u>http://www.inf.ed.ac.uk/teaching/courses/stn/</u>
- Lookout for announcements on the web page
- Reading materials, slides, exercise sets will be uploaded to the web page.

Note and exercises

- Some material will be covered in lectures, other materials will be given as notes and exercises
- Please follow along as these are uploaded
 - Solutions to some exercises to be uploaded 1-2 week afterward
- Suggestion: Create your own study groups of 3 5 people and discuss
 - Try to write the solutions, proofs as cleanly and logically as possible

Lectures

• Please attend the lectures

• Bring notebook and pen

Coursework Project

- You will be given option of 10-12 projects
 - Pick one to do
- Topics expected in areas of:
 - Machine learning and optimisation
 - Algorithms and data structures
 - Data mining
 - Recommendation systems
 - Social networks
 - Linguistic networks and analysis of stories
 - Road networks or maps
 - Self driving cars (possibly)
 - Find your own topic!

Coursework Project

- You will be given a general topic area
- Your job is to:
 - Understand the domain and identify a question to answer. Determine its motivations.
 - Formulate the problem precisely, mathematically.
 - Find good solutions
 - Show that your solution works well
 - Can be theoretical or experimental (or both)
 - Either way, you need to be rigorous be able say exactly where it works or does not work, and why
 - Write a good report that explains all of the above nicely

Project

- 1 project. 40% of marks
- Given: Around Oct 10 to 15.
- Due: Around Nov 15.
- Objective: Try something new in network science.
- Submit code and ≈3 page report
- The usual project consists of motivation, problem formulation, some mathematical/algorithmic ideas and verification by experiments
- We assume that you can program and run common algorithm and ML libraries
- Marked on
 - Rigor of work
 - Originality in problem and solution
 - Clarity of presentation

Projects

- Open ended projects are common in real world
- People that can do original work are highly valued in industry
- Your BSc/MSc projects are open ended
 - You are given a topic. You have to define exactly what to do and how
- A course project can help your BSc/MSc project
 - Network science, graph theory, are relevant to most CS areas
 - It is an opportunity to learn more about the area

Programming and python

- We will occasioanly use python with jupyter notebooks in class
- Setup instructions on web page
- Sample notebook with lecture slides. Try it out!

Theory Exam

- Standard exam, 60% of marks
- Explain phenomena, devise mechanisms, prove properties...
- Last year's paper online..

Pre-requisites

- See Topic 0: Background at
 - <u>http://www.inf.ed.ac.uk/teaching/courses/stn/files1920/lectures.html</u>
- Probability, distributions, set theory
- Basic graph theory and algorithms
 - Graphs, trees, DFS, BFS, minimum spanning trees, sorting etc
- Asymptotic notations
- Linear algebra
- Read up on all these materials and notations
- Do exercise 0
- Make sure you know this material
- And can do exercises 0 without help, and can explain your answers
- From next class, I will assume that you know this material.

Course learning expectations

- Plan and execute original projects
- Use programming for data driven analysis
- Use theoretical analysis to understand ideas/models rigorously
- Present analysis and ideas
 - Precisely
 - Unambiguously
 - Clearly
- Have fun playing with new ideas!