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Spectral methods

Understanding a graph using eigen values and
eigen vectors of the matrix

We saw:

Ranks of web pages: components of 1st eigen
vector of suitable matrix

Pagerank or HITS are algorithms designed to
compute the eigen vector

Random walks and local pageranks help in
understanding community structure



Laplacian

@ @ @ @
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* An eigen vector has one value for each node

 We are interestedin properties of these
values
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Positive semidefinite. Non-negative eigen values




Laplacian and random walks

* Suppose we are doing a random walk on a graph

e Let u(i) be the probability of the walk being at
node i
— E.g. initially it is at starting node s

— After 10 steps, probability is higher near s, low at
nodes farther away

— Question: How does the probability change with
time?

— This probability diffuses with time. Like heat diffuses



Laplacian matrix

Imagine a small and different quantity of heat
at each node (say, in a metal mesh)

we write a function u: u(i) = heat at |
This heat will spread through the mesh/graph

Question: how much heat will each node have
after a small amount of time?



Heat diffusion

* Suppose nodesiand j are neighbors
— Have temperature u(i) and u(j)

— How much heat will flow fromitoj?



Heat diffusion

Suppose nodes i and j are neighbors

In a short time, how much heat will flow from
itoj?

Proportional to the gradient: (u(i) - u(j))*At

— Let us keep At fixed, and write just (u(i) - u(j))
this is sighed: negative means heat flows into i



Heat diffusion

* |fihas neighborsjl, j2....

 Then heat flowing out of i is:
= (u(i) - u(j1)) + (u(i) - u(j2)) + (ui) - u(j3)) + ...
= degree(i)*u(i) - u(j1) - u(j2) - u(j3) - ....

* HenceL=D-A
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The heat equation

ou

* The net heat outflow of nodes in a time step

* The change in heat distribution in a small time
step
— The rate of change of heat distribution



The smooth heat equation

 The smooth Laplacian:
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* The smooth heat equation:

of

AF =5



Heat flow

* Will eventually converge to
v[0] : the zeroth eigen
vector, with eigen value \q = ()

v[0] = const for the chain



Eigen vectors

* Other eigen vectors

* Encode various properties of the graph
— Or, properties of diffusion in graph

 Have many applications



Diffusion as a distance feature

CD is a weak connection Strong connection
— Fragile
— Single short path

— Diffusionfrom CtoDis
slow

AB is a strong connection
— Robust (to edge failure)

— Many short paths

— Diffusion from A to B is
fast

“Thick corridor” vs “Thin
corridor”




Application 1: Drawing a graph
(Embedding)

Problem: Computer does
not know what a graph is
supposed to look like

A graph is a jumble of
edges

Consider a grid graph:
We want it drawn nicely
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Graph embedding

* Find positions for vertices of a graph in low
dimension (compared to n)

e Common objective: Preserve some properties of
the graph e.g. approximate distances between
vertices. Create a metric

— Useful in visualization
— Finding approximate distances
— Clustering
* Using eigen vectors
— One eigen vector gives x values of nodes
— Other gives y-values of nodes ... etc



Draw with v[1] and v[2]

e Suppose v[0], v[1], v[2]...
are eigen vectors

— Sorted by increasing eigen
values

* Plot graph using X=v[1],
Y=v[2]

* Produces the grid




Intuitions: the 1-D case

Suppose we take the jth eigen vector of a
chain

What would that look like?
We are going to plot the chain along x-axis

The y axis will have the value of the node in
the jth eigen vector

We want to see how these rise and fall



Observations (20 node chain)
e j=0
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For All j

* Low ones at

bottom

e Highonesattop ——MWX— — — — ~

e Code on web T

page




Observations

In Dim 1 grid:

— v[1] is monotone

— v[2] is not monotone
In dim 2 grid:

— both v[1] and v[2] are
monotone in suitable
directions

For low values of j:

— Nearby nodes have similar
values

e Useful forembedding
Similar to PCA




Application 2: Colouring

* Colouring: Assign colours to
vertices, such that
neighboring vertices do not
have same colour
— E.g. Assignment of radio

channels to wireless nodes.

Good colouring reduces
interference

* |dea: High eigen vectors give
dissimilar values to nearby
nodes

* Use for colouring!




Application 3:
Cuts/segmentation/clustering

Find the smallest ‘cut’

A small set of edges
whose removal
disconnects the graph

Clustering, community
detection...

ldea: Use spectral
embedding followed by
standard clustering




Clustering/community detection

e v[1] tends to stretchthe
narrow connections:
discriminates different
communities

e V[1] is sufficientto %
detect 2 communities
* Can be applied

repeatedly for
hierarchical clustering




Clustering: community detection

More communities

Spectral embedding
needs higher
dimensions

Warning: it does not l
always work so cleanly

In this case, the data is
very symmetric
clustered




Spectral clustering

* Objective: Cluster a given set of items

1. Define similarity graph between items
— E.g. By creating edge between nearby items
— Edge implies similar items, no edge implies
dissimar items
— Other graph construction methods are possible

2. Compute laplacian and spectra
3. Embed using first k eigen vectors
4. Perform k-means or similar k-clustering



How many dimensions to use?

e Common heuristic:

 The biggest gap among successive eigen

values
m]?X P\k — )\k—l‘
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Image segmentation

Shi & malik ‘00




Eigen vectors of Laplacian

* Change implied by L on any
input vector can be represented
by sum of action of its eigen
vectors (we saw this for HITS
MMT)

* v[0] is the slowest component

of the change
— With multiplier A,=0
— The steady state component

e v[1]is slowest non-zero
component

— with multiplier A,



Spectral gap
A - A

Determines the overall speed of change
— And therefore speed of convergence
If the slowest component v[1] changes fast
— Then overallthe values must be changing fast
— Fast diffusion
If the slowest component is slow
— Convergence will be slow
Examples:

— Expandersand random graphshavelarge spectral gaps
— Grids and dumbbells have smallgaps ~ 1/n



Application 4: isomorphism testing

* Eigen values being differentimplies graphs are
different

 Though not necessarily the other way



Spectral methods

Wide applicability inside and outside networks

Related to many fundamental concepts
— PCA
— SVD

Random walks, diffusion, heat equation...

Results are good many times, but not always
Relatively hard to prove and understand properties
Inefficient: eig. computation costly on large matrix

(Somewhat) efficient methods exist for more restricted
problems

— e.g. whenwe want only a few smallest/largest eigen vectors



