Spectral Graph Theory

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Spectral methods

Understanding a graph using eigen values and
eigen vectors of the matrix

We saw:

Ranks of web pages: components of 1st eigen
vector of suitable matrix

Pagerank or HITS are algorithms designed to
compute the eigen vector

Random walks and local pageranks help in
understanding community structure

Laplacian

@ @ @ @

* L=D-A [Dis thediagonal matrix of degrees]

1 -1 0 o] [1 o001 [o 1 0 0]
-1 2 -1 0| |0 200 1 0 1 0
o -1 2 —1|"]100 20| |0101

0 0 -1 1] [00O0 1] |[0O0 1 0]

* An eigen vector has one value for each node

 We are interestedin properties of these
values

Laplacian

@

@

L=D—-A [Disthe diagonal matrix of degrees]

1
—1
0
0

Symmetric. Real Eigen values.
Row sum=0. Singular matrix. At least one eigen

—1
2
—1
0

value =0.

0
—1
2
—1

0

0
—1

1

o O O =

S O N O

O N OO

—_o O O

SO = O

S = O

_ O = O

S = O O

Positive semidefinite. Non-negative eigen values

Laplacian and random walks

* Suppose we are doing a random walk on a graph

e Let u(i) be the probability of the walk being at
node i
— E.g. initially it is at starting node s

— After 10 steps, probability is higher near s, low at
nodes farther away

— Question: How does the probability change with
time?

— This probability diffuses with time. Like heat diffuses

Laplacian matrix

Imagine a small and different quantity of heat
at each node (say, in a metal mesh)

we write a function u: u(i) = heat at |
This heat will spread through the mesh/graph

Question: how much heat will each node have
after a small amount of time?

Heat diffusion

* Suppose nodesiand j are neighbors
— Have temperature u(i) and u(j)

— How much heat will flow fromitoj?

Heat diffusion

Suppose nodes i and j are neighbors

In a short time, how much heat will flow from
itoj?

Proportional to the gradient: (u(i) - u(j))*At

— Let us keep At fixed, and write just (u(i) - u(j))
this is sighed: negative means heat flows into i

Heat diffusion

* |fihas neighborsjl, j2....

 Then heat flowing out of i is:
= (u(i) - u(j1)) + (u(i) - u(j2)) + (ui) - u(j3)) + ...
= degree(i)*u(i) - u(j1) - u(j2) - u(j3) -

* HenceL=D-A

@ @ @
1 -1 0 071 [10007 [O
-1 2 -1 0| [0200]| |1
0 -1 2 —-1[-]100 2 0 0
0 0 -1 1] [000 1] [0

O = O
_= O = O
O = O O
1]

The heat equation

ou

* The net heat outflow of nodes in a time step

* The change in heat distribution in a small time
step
— The rate of change of heat distribution

The smooth heat equation

 The smooth Laplacian:

° * o*
f+ f+ f

Af = :
f ox? Oy* 022

* The smooth heat equation:

of

AF =5

Heat flow

* Will eventually converge to
v[0] : the zeroth eigen
vector, with eigen value \q = ()

v[0] = const for the chain

Eigen vectors

* Other eigen vectors

* Encode various properties of the graph
— Or, properties of diffusion in graph

 Have many applications

Diffusion as a distance feature

CD is a weak connection Strong connection
— Fragile
— Single short path

— Diffusionfrom CtoDis
slow

AB is a strong connection
— Robust (to edge failure)

— Many short paths

— Diffusion from A to B is
fast

“Thick corridor” vs “Thin
corridor”

Application 1: Drawing a graph
(Embedding)

Problem: Computer does
not know what a graph is
supposed to look like

A graph is a jumble of
edges

Consider a grid graph:
We want it drawn nicely

o ® o o ®
° ° ° °
e ® o o ®
[L 2 L L 2 9
o ® © o ®
[~ a1 g’
-/'*4§=-i?‘—'"a\? a
T TN b PR ‘-\. 5
XY TR, ',a\i‘
"'5.:-::-‘ g‘,.»:_i" - ?eitﬁ-,\.itrr |l
W LTSRN, |
e G 1 s oS S AN
;“:’—‘ L o LB R e ,:
N Y N a)
RN R e L
PO PRt T
e e e — q:,’f y
;"‘.2\‘; a‘.' 5',;-- s"‘i.é.,."l’-f"ﬁ' :
RAWE e '
SN s gl

Graph embedding

* Find positions for vertices of a graph in low
dimension (compared to n)

e Common objective: Preserve some properties of
the graph e.g. approximate distances between
vertices. Create a metric

— Useful in visualization
— Finding approximate distances
— Clustering
* Using eigen vectors
— One eigen vector gives x values of nodes
— Other gives y-values of nodes ... etc

Draw with v[1] and v[2]

e Suppose v[0], v[1], v[2]...
are eigen vectors

— Sorted by increasing eigen
values

* Plot graph using X=v[1],
Y=v[2]

* Produces the grid

Intuitions: the 1-D case

Suppose we take the jth eigen vector of a
chain

What would that look like?
We are going to plot the chain along x-axis

The y axis will have the value of the node in
the jth eigen vector

We want to see how these rise and fall

Observations (20 node chain)
e j=0

° J=1

/
VAN
AW

For All j

* Low ones at

bottom

e Highonesattop ——MWX— — — — ~

e Code on web T

page

Observations

In Dim 1 grid:

— v[1] is monotone

— v[2] is not monotone
In dim 2 grid:

— both v[1] and v[2] are
monotone in suitable
directions

For low values of j:

— Nearby nodes have similar
values

e Useful forembedding
Similar to PCA

Application 2: Colouring

* Colouring: Assign colours to
vertices, such that
neighboring vertices do not
have same colour
— E.g. Assignment of radio

channels to wireless nodes.

Good colouring reduces
interference

* |dea: High eigen vectors give
dissimilar values to nearby
nodes

* Use for colouring!

Application 3:
Cuts/segmentation/clustering

Find the smallest ‘cut’

A small set of edges
whose removal
disconnects the graph

Clustering, community
detection...

ldea: Use spectral
embedding followed by
standard clustering

Clustering/community detection

e v[1] tends to stretchthe
narrow connections:
discriminates different
communities

e V[1] is sufficientto %
detect 2 communities
* Can be applied

repeatedly for
hierarchical clustering

Clustering: community detection

More communities

Spectral embedding
needs higher
dimensions

Warning: it does not l
always work so cleanly

In this case, the data is
very symmetric
clustered

Spectral clustering

* Objective: Cluster a given set of items

1. Define similarity graph between items
— E.g. By creating edge between nearby items
— Edge implies similar items, no edge implies
dissimar items
— Other graph construction methods are possible

2. Compute laplacian and spectra
3. Embed using first k eigen vectors
4. Perform k-means or similar k-clustering

How many dimensions to use?

e Common heuristic:

 The biggest gap among successive eigen

values
m]?X P\k —)\k—l‘

—_—

Image segmentation

Shi & malik ‘00

Eigen vectors of Laplacian

* Change implied by L on any
input vector can be represented
by sum of action of its eigen
vectors (we saw this for HITS
MMT)

* v[0] is the slowest component

of the change
— With multiplier A,=0
— The steady state component

e v[1]is slowest non-zero
component

— with multiplier A,

Spectral gap
A - A

Determines the overall speed of change
— And therefore speed of convergence
If the slowest component v[1] changes fast
— Then overallthe values must be changing fast
— Fast diffusion
If the slowest component is slow
— Convergence will be slow
Examples:

— Expandersand random graphshavelarge spectral gaps
— Grids and dumbbells have smallgaps ~ 1/n

Application 4: isomorphism testing

* Eigen values being differentimplies graphs are
different

 Though not necessarily the other way

Spectral methods

Wide applicability inside and outside networks

Related to many fundamental concepts
— PCA
— SVD

Random walks, diffusion, heat equation...

Results are good many times, but not always
Relatively hard to prove and understand properties
Inefficient: eig. computation costly on large matrix

(Somewhat) efficient methods exist for more restricted
problems

— e.g. whenwe want only a few smallest/largest eigen vectors

