Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Kernels

• Kernels are a type of measures of similarity
• Important technique in Machine learning
• Used to increase power of many techniques

• Can be defined on graphs
• Used to compare, classify, cluster many small graphs
 – E.g. Molecules, neighborhoods of different people in social networks etc...
Graph kernels

• To compute similarity between two attributed graphs
 – Nodes can carry labels
 – E.g. Elements (C, N, H etc) in complex molecules

• Idea: It is not obvious how to compare two graphs
 – Instead compute walks, cycles etc on the graph, and compare those

• There are various types of kernels defined on graphs
Walk counting

- Count the number of walks of length k from i to j
- Idea: i and j should be considered close if
 - They are not far in the shortest path distance
 - And there are many walks of short length between them (so they are highly connected)

- So, there would be many walks of length $\leq k$
Walk counting

• Can be computed by taking k^{th} power of adjacency matrix A

• If $A^k(i, j) = c$, that means there are c walks of length k between i and j
 – Homework: Check this!

• Note: A^k is expensive, but manageable for small graphs

• Kernel: compare A^k for the two graphs
Common walk kernel

• Count how many walks are common between the two graphs

• That is, take all possible walks of length k on both graphs.
 – Count the number that are exactly the same
 – Two walks are same if they follow the same sequence of labels
 • (note that other than labels, there is no obvious correspondence between nodes)
Recap: dot product and cosine similarity

\[
\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}.
\]

Computation of \(\mathbf{A} \cdot \mathbf{B}\) is the important element. Since \(\|\mathbf{A}\| \|\mathbf{B}\|\) is just normalization. \(\mathbf{A} \cdot \mathbf{B}\) can be seen as the unnormalized similarity.
Common walk kernel as a dot product or cosine similarity

• For graphs G_A and G_B
• Imagine vectors A and B representing all walks in graphs
• Each position has a
 – Zero if that walk does not occur in the graph
 – One if the walk occurs in the graph
• Then $A \cdot B = \text{number of common walks in the graph}$
Random walk kernel

• Perform multiple random walks of length k on both graphs
• Count the number of walks (label sequences) common to both graphs
• Check that this is analogous to a dot product
• Note that the vectors implied by the kernel do not need to be computed explicitly
Tottering

• Walks can move back and forth between adjacent vertices
 – Small structural similarities can produce a large score

• Usual technique: for a walk v_1, v_2, \ldots prohibit return along an edge, ie prohibit $v_i = v_{i+2}$
Subtree kernel

• From each node, compute a neighborhood upto distance h

• From every pair of nodes in two graphs, compare the neighborhoods
 – And count the number of matches (nodes in common)
Shortest path kernel

• Compute all pairs shortest paths in two graphs
• Compute the number of common sequences
• Tottering problem does not appear

• Problem: there can be many (exponentially many) shortest paths between two nodes
 – Computational problems
 – Can bias the similarity
Shortest distance kernel

• Instead use shortest distance between nodes
• Always unique

• Method:
 – Compute all shortest distances $SD(G_1)$ and $SD(G_2)$ in graphs G_1 and G_2
 – Define kernel (e.g. Gaussian kernel) over pairs of distances: $k(s_1, s_2)$, where $s_1 \in SD(G_1), s_2 \in SD(G_2)$
 – Define shortest path (SP) kernel between graphs as sum of kernel values over all pairs of distances between two graphs
 • $K_{SP}(G_1, G_2) = \sum_{s_1} \sum_{s_2} k(s_1, s_2)$
Kernel based ML

• Kernels are powerful methods in machine learning
• We will briefly review general kernels and their use
The main ML question

- For classes that can be separated by a line
 - ML is easy
 - E.g. Linear SVM, Single Neuron

- But what if the separation is more complex?
The main ML question

• For classes that can be separated by a line
 – ML is easy
 – E.g. Linear SVM, Single Neuron

• What if the structure is more complex?
 – Cannot separated linearly
Non linear separators

- Method 1:
 - Search within a class of non linear separators
 - E.g. Search over all possible circles, parabola etc.
 - higher degree polynomials allow more curved lines
Method 2: Lifting to higher dimensions

• Suppose we lift every \((x,y)\) point to

• \((x, y) \rightarrow (x, y, x^2 + y^2)\):

• Now there is a linear separator!
Exercise

• Suppose we have the following data:

• How would you lift and classify?

• Assuming there is a mechanism to find linear separators (in any dimension) if they exist
Kernels

• A similarity measure $K: X \times X \rightarrow \mathbb{R}$ is a kernel if:

• There is an embedding ψ (usually to higher dimension),
 – Such that: $K(u, v) = \langle \psi(u), \psi(v) \rangle$
 – Where \langle, \rangle represents inner product
 • Dot product is a type of inner product
Benefit of Kernels

• High dimensions have power to represent complex structures
 – We have seen in reference to complicated networks

• Lifting data to high dimensions can be used to separate complex structures that cannot be distinguished in low dimensions
 – But lifting to higher dimensions can be expensive (storage, computation)
 – Particularly when the data itself is already high dimensional

• Kernels define a similarity that is easy to compute
 – Equivalent to a high dimensional lift
 – Without having to compute the high-d representation

• Called the “Kernel trick”
Example kernel

• For the examples we saw earlier, the following kernel helps:

\[K(u, v) = (u \cdot v)^2 \]
Example kernel

• For the examples we saw earlier, the following kernel helps:

• \(K(u, v) = (u \cdot v)^2 \)

 – The implied lifting map is:

 \[
 \psi(u) = (u_x^2, \sqrt{2} u_x u_y, u_y^2)
 \]

 – Try it out!
More examples

• General Polynomial Kernel
 \[K(u, v) = (1 + (u \cdot v))^k \]

• Gaussian Kernel
 \[K(u, v) = e^{-\frac{|u-v|^2}{2\sigma^2}} \]
 – Sometimes called Radial Basis Function (RBF) kernel
 – Extremely useful in practice when you do not have specific knowledge of data
Heat Kernel or diffusion kernel

• Suppose heat diffuses for time t
• The rate at which heat moves from u to v is given by the Laplacian:

$$\frac{\partial}{\partial t} k_t(u, v) = \Delta k_t(u, v)$$

• The solution to this differential equation is the Gaussian!

$$k_t(u, v) = \frac{1}{(4\pi t)^{D/2}} e^{-|u-v|^2/4t}$$