Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Kernels

Kernels are a type of measures of similarity
mportant technigue in Machine learning

Used to increase power of many techniques

Can be defined on graphs
Used to compare, classify, cluster many small
graphs

— E.g. Molecules, neighborhoods of different people
in social networks etc...

Graph kernels

* To compute similarity between two attributed
graphs
— Nodes can carry labels
— E.g. Elements (C, N, H etc) in complex molecules

* |dea: It is not obvious how to compare two
graphs

— Instead compute walks, cycles etc on the graph, and
compare those

 There are various types of kernels defined on
graphs

Walk counting

* Count the number of walks of length k from i
to |
* |dea: i and jshould be considered close if

— They are not far in the shortest path distance

— And there are many walks of short length
between them (so they are highly connected)

* So, there would be many walks of length < k

Walk counting

Can be computed by taking k™ power of
adjacency matrix A

If A¥(i,j) = c, that means there are c walks
of length k between i and j

— Homework: Check this!

Note: A® is expensive, but manageable for
small graphs

Kernel: compare A* for the two graphs

Common walk kernel

* Count how many walks are common between the
two graphs

* That is, take all possible walks of length k on both
graphs.
— Countthe number that are exactly the same

— Two walks are same if they follow the same sequence

of labels

* (note that other thanlabels, there is no obvious
correspondence between nodes)

Recap: dot product and cosine
similarity

A-B

[AlIB] \/— \/Z -

Computationof A.Bis the important element.Since |A||B] is just normalization.
A.B can be seen as the unnormalized similarity.

similarity = cos(0) =

Common walk kernel as a dot product
or cosine similarity

* For graphs G, and Gg

* I[magine vectors A and B representing all walks
in graphs

* Each position has a
— Zero if that walk does not occur in the graph
— One if the walk occursin the graph

e Then A.B = number of common walks in the
graph

Random walk kernel

Perform multiple random walks of length k on
both graphs

Count the number of walks (label sequences)
common to both graphs

Check that this is analogous to a dot product

Note that the vectors implied by the kernel do
not need to be computed explicitly

Tottering

e \Walks can move back and forth between
adjacent vertices

— Small structural similarities can produce a large
score

* Usual technique: for a walk v, v,, ... prohibit
return along an edge, ie prohibit v; = v;,

Subtree kernel

* From each node, compute a neighborhood
upto distance h

* From every pair of nodes in two graphs,
compare the neighborhoods

— And count the number of matches (nodes in
common)

Shortest path kernel

Compute all pairs shortest paths in two graphs
Compute the number of common sequences

Tottering problem does not appear

Problem: there can be many (exponentially
many) shortest paths between two nodes

— Computational problems
— Can bias the similairity

Shortest distance kernel

* |Instead use shortest distance between nodes
* Always unique

e Method:

— Compute all shortest distances SD(G1) and SD(G2) in
graphs G1 and G2

— Define kernel (e.g. Gaussian kernel) over pairs of distances:
k(s{,s,), where s; € SD(G,),s, € SD(G>)

— Define shortest path (SP)kernel between graphs as sum of
kernel values over all pairs of distances between two
graphs

¢ KSP(G1’ GZ) — 251 Z'SZ k(Sl’SZ)

Kernel based ML

* Kernels are powerful methods in machine
learning

* We will briefly review general kernels and
their use

The main ML question

* For classesthat can be
separated by a line
— ML is easy

— E.g. Linear SVM, Single
Neuron

* But what if the
separation is more
complex?

The main ML question

* For classes that can be
separated by a line
— ML is easy
— E.g. Linear SVM, Single
Neuron
 What if the structureis
more complex?

— Cannot separated

linearly

Non linear separators

* Method 1:

— Search within a class of non
linear separators

— E.g. Search over all possible
circles, parabola etc.

— higher degree polynomials
allow more curved lines

Method 2: Lifting to higher dimensjons

* Suppose we lift every (x,y) point
to

* (6, y) = (6, y,x* +y%):

....
“lat -~
\\\\\

* Now thereis a linear separator! = iy

Exercise

e Suppose we have the following data:

*—0—0. e o0 00 09

* How would you lift and classify?

* Assuming there is a mechanism to find linear
separators (in any dimension) if they exist

Kernels

* Asimilarity measure K: XXX — R is a kernel
if:

* Thereis an embedding 1 (usually to higher
dimension),

— Such that: K(u,v) = (¥ (u), Y (v))
— Where (,) representsinner product
* Dot productis a type of inner product

Benefit of Kernels

High dimensions have power to representcomplexstructures
— We haveseen inreference to complicated networks

Lifting data to high dimensions can be used to separate complex
structures that cannotbe distinguished in low domensions

— Butliftingto higher dimensions can be expensive (storage,
computation)

— Particularly when the dataiitselfis already high dimensional

Kernels define a similarity thatis easyto compute
— Equivalentto a high dimensional lift
— Without havingto compute the high-d representation

Called the “Kernel trick”

Example kernel

* For the examples we saw
earlier, the following kernel

helps:

Nalgda .

Example kernel

* Forthe examples we saw earlier,
the following kernel helps:

 K(u,v) = (u-v)?
— The implied lifting map is:
) = (Ui V2 uyu, u?)
— Try it out!

More examples

General Polynomial Kernel

K(u,v)=(1+ (u-v))*

Gaussian Kernel

lu—v|?

Kuv)=e 202

— Sometimes called Radial Basis

Function (RBF) kernel

— Extremely useful in practice
when you do not have specific

knowledge of data

o+
B o + s DDA
++++3¢++ w7 ++++4!; N ++t++
i o S P S A5 e
FHow F o8 Bol gl oo Nt + +T o+
++f S & Cm) ++“‘*[&) H [4+ 4+
_Hp#. :t'*f- Q “p0 g t}I) @ 0 it +++ + ++
+-H'. F o \ S . *:LJ - = ’ﬂ " &L—f‘_/_’}_‘
DN + q o3
+4 ++l & £ ,”'\ bd B)
+ 1" Q¢ 90T g0 ¢
+ 45+ 86 Og "B G0 R,
4 o+t ' P X8 X
+ +#+-:.#.t ’ ""J&f f ﬁﬁk)]
+
R A L) R
oty A Wy 5o, [¥
e P A + 4
T / - # 1+
+H I +t 300 ++
+H]}[H P2 'H?: +H
" A N
4+t) ['“‘ | ((‘4 1 1 y | +'H- I
0 01 02 03 04 05 08 07 08 08 1

+#++ *%++# ++
++ 4*++ $ 3+++*++ ﬁ+

Heat Kernel or diffusion kernel

* Suppose heat diffuses for time t

* The rate at which heat moves from utov is
given by the Laplacian:

0
akt (u7 U) — Akt (ua U)

* The solution to this differential equation is the
Gaussian!

1 —|u—w|? /4t
k(s 0) = cpme

