Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Kernels

- Kernels are a type of measures of similarity
- Important technique in Machine learning
- Used to increase power of many techniques
- Can be defined on graphs
- Used to compare, classify, cluster many small graphs
- E.g. Molecules, neighborhoods of different people in social networks etc...

Graph kernels

- To compute similarity between two attributed graphs
- Nodes can carry labels
- E.g. Elements (C, N, H etc) in complex molecules
- Idea: It is not obvious how to compare two graphs
- Instead compute walks, cycles etc on the graph, and compare those
- There are various types of kernels defined on graphs

Walk counting

- Count the number of walks of length k from i to j
- Idea: i and j should be considered close if
- They are not far in the shortest path distance
- And there are many walks of short length between them (so they are highly connected)
- So, there would be many walks of length $\leq k$

Walk counting

- Can be computed by taking $k^{\text {th }}$ power of adjacency matrix A
- If $A^{k}(i, j)=c$, that means there are c walks of length k between i and j
- Homework: Check this!
- Note: A^{k} is expensive, but manageable for small graphs
- Kernel: compare A^{k} for the two graphs

Common walk kernel

- Count how many walks are common between the two graphs
- That is, take all possible walks of length k on both graphs.
- Count the number that are exactly the same
- Two walks are same if they follow the same sequence of labels
- (note that other than labels, there is no obvious correspondence between nodes)

Recap: dot product and cosine similarity

$$
\text { similarity }=\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \mathbf{\|} \|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}
$$

Computation of $A . B$ is the important element. Since $|A||B|$ is just normalization. $A . B$ can be seen as the unnormalized similarity.

Common walk kernel as a dot product or cosine similarity

- For graphs G_{A} and G_{B}
- Imagine vectors A and B representing all walks in graphs

- Each position has a
- Zero if that walk does not occur in the graph
- One if the walk occurs in the graph
- Then $A . B=$ number of common walks in the graph

Random walk kernel

- Perform multiple random walks of length k on both graphs
- Count the number of walks (label sequences) common to both graphs
- Check that this is analogous to a dot product
- Note that the vectors implied by the kernel do not need to be computed explicitly

Tottering

- Walks can move back and forth between adjacent vertices
- Small structural similarities can produce a large score
- Usual technique: for a walk v_{1}, v_{2}, \ldots prohibit return along an edge, ie prohibit $v_{i}=v_{i+2}$

Subtree kernel

- From each node, compute a neighborhood upto distance h
- From every pair of nodes in two graphs, compare the neighborhoods
- And count the number of matches (nodes in common)

Shortest path kernel

- Compute all pairs shortest paths in two graphs
- Compute the number of common sequences
- Tottering problem does not appear
- Problem: there can be many (exponentially many) shortest paths between two nodes
- Computational problems
- Can bias the similairity

Shortest distance kernel

- Instead use shortest distance between nodes
- Always unique
- Method:
- Compute all shortest distances SD(G1) and SD(G2) in graphs G1 and G2
- Define kernel (e.g. Gaussian kernel) over pairs of distances: $k\left(s_{1}, s_{2}\right)$, where $s_{1} \in S D\left(G_{1}\right), s_{2} \in S D\left(G_{2}\right)$
- Define shortest path (SP)kernel between graphs as sum of kernel values over all pairs of distances between two graphs
- $\mathrm{K}_{S P}\left(G_{1}, G_{2}\right)=\sum_{s_{1}} \sum_{s_{2}} k\left(s_{1}, s_{2}\right)$

Kernel based ML

- Kernels are powerful methods in machine learning
- We will briefly review general kernels and their use

The main ML question

- For classes that can be separated by a line
- ML is easy
- E.g. Linear SVM, Single Neuron
- But what if the separation is more complex?

The main ML question

- For classes that can be separated by a line
- ML is easy
- E.g. Linear SVM, Single Neuron
- What if the structure is more complex?
- Cannot separated linearly

Non linear separators

- Method 1:
- Search within a class of non linear separators
- E.g. Search over all possible circles, parabola etc.
- higher degree polynomials allow more curved lines

Method 2: Lifting to higher dimensions

- Suppose we lift every (x, y) point to
- $(x, y) \rightarrow\left(x, y, \mathrm{x}^{2}+\mathrm{y}^{2}\right):$
- Now there is a linear separator!

Exercise

- Suppose we have the following data:
- How would you lift and classify?
- Assuming there is a mechanism to find linear separators (in any dimension) if they exist

Kernels

- A similarity measure $K: X \times X \rightarrow \mathbb{R}$ is a kernel if:
- There is an embedding ψ (usually to higher dimension),
- Such that: $K(\boldsymbol{u}, \boldsymbol{v})=\langle\psi(\boldsymbol{u}), \psi(\boldsymbol{v})\rangle$
- Where \langle,$\rangle represents inner product$
- Dot product is a type of inner product

Benefit of Kernels

- High dimensions have power to represent complex structures
- We have seen in reference to complicated networks
- Lifting data to high dimensions can be used to separate complex structures that cannot be distinguished in low domensions
- But lifting to higher dimensions can be expensive (storage, computation)
- Particularly when the data itself is already high dimensional
- Kernels define a similarity that is easy to compute
- Equivalent to a high dimensionallift
- Without having to compute the high-d representation
- Called the "Kernel trick"

Example kernel

- For the examples we saw earlier, the following kernel helps:
- $K(u, v)=(u \cdot v)^{2}$

Example kernel

- For the examples we saw earlier, the following kernel helps:
- $K(u, v)=(u \cdot v)^{2}$
- The implied lifting map is:

$$
\psi(u)=\left(u_{x}^{2}, \sqrt{2} u_{x} u_{y}, u_{y}^{2}\right)
$$

- Try it out!

More examples

- General Polynomial Kernel
- $K(u, v)=(1+(u \cdot v))^{k}$
- Gaussian Kernel
- $K(u, v)=e^{-\frac{|u-v|^{2}}{2 \sigma^{2}}}$
- Sometimes called Radial Basis Function (RBF) kernel
- Extremely useful in practice when you do not have specific knowledge of data

Heat Kernel or diffusion kernel

- Suppose heat diffuses for time t
- The rate at which heat moves from u to v is given by the Laplacian:

$$
\frac{\partial}{\partial t} k_{t}(u, v)=\Delta k_{t}(u, v)
$$

- The solution to this differential equation is the Gaussian!

$$
k_{t}(u, v)=\frac{1}{(4 \pi t)^{D / 2}} e^{-|u-v|^{2} / 4 t}
$$

