
Kernel	methods	and	Graph	kernels

Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2019.

Kernels

• Kernels	are	a	type	of	measures	of	similarity
• Important	technique	in	Machine	learning
• Used	to	increase	power	of	many	techniques

• Can	be	defined	on	graphs
• Used	to	compare,	classify,	cluster	many	small	
graphs
– E.g.	Molecules,	neighborhoods	of	different	people	
in	social	networks	etc…

Graph	kernels

• To	compute	similarity	between	two	attributed	
graphs
– Nodes	can	carry	labels
– E.g.	Elements	(C,	N,	H	etc)	in	complex	molecules

• Idea:	It	is	not	obvious	how	to	compare	two	
graphs
– Instead	compute	walks,	cycles	etc on	the	graph,	and	
compare	those

• There	are	various	types	of	kernels	defined	on	
graphs

Walk	counting

• Count	the	number	of	walks	of	length	k	from	i
to	j

• Idea:	i and	j	should	be	considered	close	if
– They	are	not	far	in	the	shortest	path	distance
– And	there	are	many	walks	of	short	length	
between	them	(so	they	are	highly	connected)

• So,	there	would	be	many	walks	of	length	≤ 𝑘

Walk	counting

• Can	be	computed	by	taking	kth power	of	
adjacency	matrix	A

• If	𝐴$ 𝑖, 𝑗 = 𝑐 ,	that	means	there	are	c	walks	
of	length	k	between	i and	j
– Homework:	Check	this!

• Note:	𝐴$ is	expensive,	but	manageable	for	
small	graphs

• Kernel:	compare	𝐴$ for	the	two	graphs

Common	walk	kernel

• Count	how	many	walks	are	common	between	the	
two	graphs

• That	is,	take	all	possible	walks	of	length	k	on	both	
graphs.
– Count	the	number	that	are	exactly	the	same
– Two	walks	are	same	if	they	follow	the	same	sequence	
of	labels
• (note	that	other	than	labels,	there	is	no	obvious	
correspondence	between	nodes)

Recap:	dot	product	and	cosine	
similarity

Computation	of	A.B	is	the	important	element.	Since	|A||B|	is	just	normalization.
A.B	can	be	seen	as	the	unnormalized	similarity.	

Common	walk	kernel	as	a	dot	product	
or	cosine	similarity	

• For	graphs	GA and	GB

• Imagine	vectors	A	and	B	representing	all	walks	
in	graphs

• Each	position	has	a	
– Zero	if	that	walk	does	not	occur	in	the	graph
– One	if	the	walk	occurs	in	the	graph

• Then	A.B	=	number	of	common	walks	in	the	
graph

Random	walk	kernel

• Perform	multiple	random	walks	of	length	k	on	
both	graphs

• Count	the	number	of	walks	(label	sequences)	
common	to	both	graphs

• Check	that	this	is	analogous	to	a	dot	product

• Note	that	the	vectors	implied	by	the	kernel	do	
not	need	to	be	computed	explicitly

Tottering

• Walks	can	move	back	and	forth	between	
adjacent	vertices
– Small	structural	similarities	can	produce	a	large	
score	

• Usual	technique:	for	a	walk	𝑣+, 𝑣,, … prohibit	
return	along	an	edge,	ie prohibit	𝑣. = 𝑣./,	

Subtree kernel

• From	each	node,	compute	a	neighborhood	
upto distance	h

• From	every	pair	of	nodes	in	two	graphs,	
compare	the	neighborhoods
– And	count	the	number	of	matches	(nodes	in	
common)

Shortest	path	kernel

• Compute	all	pairs	shortest	paths	in	two	graphs
• Compute	the	number	of	common	sequences

• Tottering	problem	does	not	appear

• Problem:	there	can	be	many	(exponentially	
many)	shortest	paths	between	two	nodes
– Computational	problems
– Can	bias	the	similairity

Shortest	distance	kernel
• Instead	use	shortest	distance	between	nodes
• Always	unique

• Method:	
– Compute	all	shortest	distances	SD(G1)	and	SD(G2)	in	
graphs	G1	and	G2

– Define	kernel	(e.g.	Gaussian	kernel)	over	pairs	of	distances:	
𝑘 𝑠+ , 𝑠, ,where	𝑠+ ∈ 𝑆𝐷 𝐺+ , 𝑠, ∈ 𝑆𝐷(𝐺,)

– Define	shortest	path	(SP)kernel	between	graphs	as	sum	of	
kernel	values	over	all	pairs	of	distances	between	two	
graphs
• 	K9: 𝐺+,𝐺, = ∑ ∑ 𝑘(𝑠+,𝑠,)<=<> 	

Kernel	based	ML

• Kernels	are	powerful	methods	in	machine	
learning

• We	will	briefly	review	general	kernels	and	
their	use	

The	main	ML	question

• For	classes	that	can	be	
separated	by	a	line
– ML	is	easy
– E.g.	Linear	SVM,	Single	
Neuron

• But	what	if	the	
separation	is	more	
complex?	

The	main	ML	question	

• For	classes	that	can	be	
separated	by	a	line
– ML	is	easy
– E.g.	Linear	SVM,	Single	
Neuron

• What	if	the	structure	is	
more	complex?
– Cannot	separated	
linearly

Non	linear	separators

• Method	1:	
– Search	within	a	class	of	non	
linear	separators

– E.g.	Search	over	all	possible	
circles,	parabola	etc.	

– higher	degree	polynomials	
allow	more	curved	lines

Method	2:	Lifting	to	higher	dimensions

• Suppose	we	lift	every	(x,y)	point	
to	

• 𝑥, 𝑦 → (𝑥, 𝑦, x, + y,) :	

• Now	there	is	a	linear	separator!	

Exercise

• Suppose	we	have	the	following	data:

• How	would	you	lift	and	classify?

• Assuming	there	is	a	mechanism	to	find	linear	
separators	(in	any	dimension)	if	they	exist

Kernels

• A	similarity	measure	𝐾: 𝑋×𝑋 → ℝ is	a	kernel	
if:

• There	is	an	embedding	𝜓 (usually	to	higher	
dimension),	
– Such	that:	K 𝒖,𝒗 = ⟨𝜓 𝒖 ,𝜓 𝒗 ⟩
–Where	⟨, ⟩ represents	inner	product
• Dot	product	is	a	type	of	inner	product

Benefit	of	Kernels
• High	dimensions	have	power	to	represent	complex	structures

– We	have	seen	in	reference	to	complicated	networks
• Lifting	data	to	high	dimensions	can	be	used	to	separate	complex	

structures	that	cannot	be	distinguished	in	low	domensions
– But	lifting	to	higher	dimensions	can	be	expensive	(storage,	

computation)
– Particularly	when	the	data	itself	is	already	high	dimensional

• Kernels	define	a	similarity	that	is	easy	to	compute
– Equivalent	to	a	high	dimensional	lift
– Without	having	to	compute	the	high-d	representation	

• Called	the	“Kernel	trick”	

Example	kernel

• For	the	examples	we	saw	
earlier,	the	following	kernel	
helps:

• 𝐾 𝑢, 𝑣 = 𝑢 ⋅ 𝑣 ,

Example	kernel

• For	the	examples	we	saw	earlier,	
the	following	kernel	helps:

• 𝐾 𝑢, 𝑣 = 𝑢 ⋅ 𝑣 ,

– The	implied	lifting	map	is:	
𝜓 𝑢 = 𝑢Q,, 2	𝑢Q𝑢S, 𝑢S,

– Try	it	out!

More	examples

• General	Polynomial	Kernel
• 𝐾 𝑢, 𝑣 = (1 + 𝑢 ⋅ 𝑣)$

• Gaussian	Kernel

• 𝐾 𝑢, 𝑣 = 𝑒`
abc =

=d=

– Sometimes	called	Radial	Basis	
Function	(RBF)	kernel

– Extremely	useful	in	practice	
when	you	do	not	have	specific	
knowledge	of	data

Heat	Kernel	or	diffusion	kernel

• Suppose	heat	diffuses	for	time	t
• The	rate	at	which	heat	moves	from	u	to	v	is	
given	by	the	Laplacian:	

• The	solution	to	this	differential	equation	is	the	
Gaussian!	

@

@t
kt(u, v) = �kt(u, v)

<latexit sha1_base64="X2x6vRfHPsu1AadqcnL7V30C3Is=">AAACIHicbVDLSgMxFM3UV62vUZdugkVoQcpMFepGKOrCZQX7gE4pmTTThmYeJHcKZeinuPFX3LhQRHf6NabtINp6IHA4515uznEjwRVY1qeRWVldW9/Ibua2tnd298z9g4YKY0lZnYYilC2XKCZ4wOrAQbBWJBnxXcGa7vB66jdHTCoeBvcwjljHJ/2Ae5wS0FLXrDieJDRxIiKBEzH5YRgmeNiFQnyKR0V8iZ0bJoCk0qjYNfNWyZoBLxM7JXmUotY1P5xeSGOfBUAFUaptWxF0kukxKtgk58SKRYQOSZ+1NQ2Iz1QnmQWc4BOt9LAXSv0CwDP190ZCfKXGvqsnfQIDtehNxf+8dgzeRSfhQRQDC+j8kBfr8CGetoV7XDIKYqwJoZLrv2I6ILox0J3mdAn2YuRl0iiX7LNS+e48X71K68iiI3SMCshGFVRFt6iG6oiiB/SEXtCr8Wg8G2/G+3w0Y6Q7h+gPjK9vQeWiUg==</latexit>

kt(u, v) =
1

(4⇡t)D/2
e�|u�v|2/4t

<latexit sha1_base64="s3y5dwAOTK8TM8pmzUiJM98Dd+Q=">AAACG3icbVDJSgNBEO1xjXGLevTSGIQETJwZA3oRgnrwGMHEQDZ6Oj2mSc9Cd00gTOY/vPgrXjwo4knw4N/YWQ5qfFDweK+KqnpOKLgC0/wyFhaXlldWU2vp9Y3Nre3Mzm5NBZGkrEoDEci6QxQT3GdV4CBYPZSMeI5gd07/cuzfDZhUPPBvYRiylkfufe5ySkBLnYzd70AuOhrk8XnTlYTGVhLnSs2QY8i346tjO0kwa8eFUVQYjNr2cQmSTiZrFs0J8DyxZiSLZqh0Mh/NbkAjj/lABVGqYZkhtGIigVPBknQzUiwktE/uWUNTn3hMteLJbwk+1EoXu4HU5QOeqD8nYuIpNfQc3ekR6Km/3lj8z2tE4J61Yu6HETCfThe5kcAQ4HFQuMsloyCGmhAqub4V0x7REYGOM61DsP6+PE9qdtE6Kdo3pWz5YhZHCu2jA5RDFjpFZXSNKqiKKHpAT+gFvRqPxrPxZrxPWxeM2cwe+gXj8xv73Z+H</latexit>

