Epidemics and gossip algorithms

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Spread of diseases

• Pattern depends on network structure
• e.g. spread of flu
• Network of people
• Network of airlines

• Different from idea/innovation contagion
 – Does not need a “decision”
 – Does not need multiple support
 • Infectious disease passes easily with some probability
• Suppose everyone meets k new people and infects each with probability p

• That is, they infect $R = kp$ people on average
• If p is high
• The disease will persists through rounds
• If p is low, it will die out after some rounds
Property

• When $R > 1$ number of infected people keeps increasing
 – Outbreak
• When $R < 1$ Number of infected people decreases
 – Disease dies out
• Phase transition at $R = 1$
• assuming there are enough “new” people supply to meet
• Generally true in the initial stages
Around $R = 1$: small efforts can have large effects on epidemic

- Awareness causing slight decrease in p
- Quarantine/fear causing slight decrease in k
SIR Model

• Susceptible (initially)
• Infectious (after being infected)
 – While Infectious, it can pass disease to each neighbor in each step with prob. p
• Removed (after given duration as Infectious)
 – Immune/dead
SIS model

- No “Removed” state. Susceptible follows Infectious
SIRS model

- Susceptible
- Infectious
- Recovered (immune)
- Susceptible
SIRS oscillations in Watts-Strogatz Small worlds

- Nodes connected to few neighbors on a ring
- Fraction c of links modified to connect to random nodes
Epidemic or gossip algorithm

• Emulates the spread of epidemic or a rumor in a network
• A node speaks to a random neighbor to spread the rumor message
• Useful for spreading information in computer networks
Spreading a message via gossip

• Complete graph: Anyone can call anyone

• Problem: One node has a message or rumor to spread. How does it spread it to all nodes in the network?

• Calling everyone will take $O(n)$ rounds.
• After first round, nodes with the rumor can help
 – But how do you avoid collision?
Spreading a message via gossip

• Complete graph: Anyone can call anyone

• Problem: One node has a message or rumor to spread. How does it spread it to all nodes in the network?

• Strategy: In each round, anyone with the rumor calls one random node and passes the rumor
Theorem

- Everyone gets the message in $O(\log n)$ rounds
- Idea:
 - $n/3$ nodes get the message in $\log n$ rounds
 - Current number of infected nodes $m < n/3$
 - Probability that a call goes to a new node is at least $2/3$
 - Number of calls to new nodes: $2m/3$
 - Probability of a collision at the new node is $1/(n-m)$
 - $O(m^2)$ possible pairs for collision
 - Max possible collisions: $\frac{m^2}{2(n-m)} \leq \frac{m^2}{2} \cdot \frac{1}{2m} = \frac{m}{4}$
- Number of newly infected nodes at least $\frac{2m}{3} - \frac{m}{4} = \frac{5m}{12}$
• while $m < n/3$
 – m grows to $m(1 + 5/12) = 17m/12$ every round
 – m grows to $n/3$ in $O(\log n)$ rounds

• After $m > n/3$
 – Probability that a node is not called in 1 round is
 \[
 \left(1 - \frac{1}{n}\right)^{\frac{n}{3}} \leq e^{-\frac{1}{n} \cdot \frac{n}{3}} = e^{-1/3}
 \]
 – Probability that 1 or more nodes are not called after $O(\log n)$ rounds
 – Less than $1/n^c$, where c depends on the constant in the O
• See Kempe 18.
Advantages of gossip

• Simple to implement
• Robust algorithm
 – A node failure does not stop the computation
 – Easy to add nodes to the system
 – At the cost of a logarithmic factor of increased costs
Averaging gossip

• Suppose the nodes all have a “value”
• And we wish to compute a linear function of these values
• E.g. the average
• The push-sum protocol
 – In every round
 – Every node takes a fraction of its value and sends to a random neighbor
 – It adds all received values to its current value

• The pairwise averaging protocol
 – In every round, a node talks to one other random neighbor
 – Both nodes set their values to the average of the two
Gossip averaging protocols

• On a complete graph
 – Both protocols converge to the average fast
 – $O(\log n)$ rounds

• On other graphs, convergence depends on structure
 – Graphs with small spectral gap have slow convergence