
Network	Embedding
Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2019.



Network	Embedding
• Definition

– Assignment	of	a	coordinate	to	each	node	
• f(v)	gives	the	coordinates	of	node	v

– In	d	dimensional	space	
– Usually	requires	unique	coordinate	for	each	

vertex
• Remember:	Intrinsic and	extrinsic	metrics

– Intrinsic	metrics:	distances	that	can	be	
measured	purely	by	walking	along	network	
edges.	e.g.	shortest	path	distance

– Exterinsic: distances	between	vertices	in	the	
ambient	space	i.e.	the	d-dimensional	
Euclidean	space



Network	embedding

• Usually	we are	interested	in	distances	
between	nodes	(discrete)

• In	some	cases,	points	on	the	edges	themselves	
may	be	relevant	(continuous)
– E.g.	road	networks



Example: suppose	we	want	to	
preserve	shortest	path	distances

• Can	we	embed:
– An	edge	in	a	chain	
– A	triangle	in	a	line
– A	triangle	in	a	2d plane
– A	square	in	a	2d	plane
– A	cycle	in	a	2d	plane



Dimension	Examples:	

• Embedding	cliques
• 1d	clique: edge
• 2d	clique:	triangle	
• 3d	clique:	tetrahedreon

• “simplices”	(cliques)	are	the	minimal	elements	
of	various	dimensions



Tree	examples:

• Let’s	take	binary	trees
• Can	we	embed	them	isometrically?
– (while	preserving	all distances)



Challenges:

• Sources	of	problem:	mismatch	between	
intrinsic	and	extrinsic	metrics
– Cycles
– Rapid	branching	and	growth
– High	dimensions



Challenges

• Dimension	of	a	graph	is	hard	
to	characterize	

• A	triangle	may	not	have	3-
cliques

• Definition:
– Subdivision:	Slit	an	edge	into	
two

– Homeomorphism:	Two	graphs	
are	homeomorphic	if	there	is	a	
way	to	subdivide	one	to	get	
another	



Challenges

• Summary:	Embedding	is	hard	
– In	general,	the	metric	of	the	graph	may	not match	
with	any Euclidean	metric	of	fixed	dimension.	E.g.	
cycles,	spheres,	trees..

– The	right	dimension	d	of	the	ambient	space	may	
be	hard	to	decide



Theoretical	results

• Smooth	(See	the	Nash	Embedding	Theorem)
– Certain	classes	(e.g.	Riemannian	manifolds	of	d	
dimension)	have	nice	(isometric	or	nearly	
isometric)	embeddings	in	Euclidean	spaces	of	
O(poly(d))	dimensions	

• (this	is	a	math	topic.	So	we	are	stating	this	
only	vaguely.	Ignore	for	exams.)



Distortion

• In	reality,	most	embeddings	are	not	perfect	–
they	distort	the	distances

• Some	distances	contract,	some	expand
• For	a	metric	space	X	with	intrinsic	distance	d,	and	
distance	d’	in	the	ambient	(embedding	space)

• Contraction:

• Expansion:		
• Distortion	=	Contraction	*	Expansion



Distortion

• Distortion	=	1	means	isometric

• Nice property:	Uniform	scaling	gives	distortion	
=	1
– Verify



Johnson	Lindenstrauss Lemma
• A	set	X	which	is	n	points	in	k-dim	Euclidean	space	has	a	an	

embedding	in	
– Euclidean	space	of	dim	O((log	n)/𝜀)		
– with	distortion	at	most	(1+𝜀).		

• Algorithm:
– Take	O((log	n)/𝜀)	random	unit	vectors	in	Rk
– Project	(take	dot	product)	of	points	of	X	on	these	vectors
– Now	we	have	O((log	n)/𝜀)	dim	representation	of	X
– Has	small	distortion

• This	is	the	basis	of	a	lot	of	modern	data	science	algorithms,	
including	compressed	sensing	



Random	walk	based node	embedding

• From	each	node	u	make	many	random	walks	of	length	
w

• Count	how	many	times	every	other	node	occurs	in	
these	random	walks	N(u)	(call	them	neighbors)
– Estimate	the	probability	of	each	nearby	node	occurring	in	
these	walks.	

• Find	embedding	z,	which	maximizes:	

max
z

X

u

logP (N(u)|zu)
<latexit sha1_base64="YEMfRPqXbsCGVdzG9W7FlfernmI=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VoF5akCrosunElFewDmhIm02k7dCYJ8xDT2K9w46+4caGIW3Hn3zhts9DWAxcO59zLvff4EaNS2fa3lVlaXlldy67nNja3tnfyu3sNGWqBSR2HLBQtH0nCaEDqiipGWpEgiPuMNP3h5cRv3hEhaRjcqjgiHY76Ae1RjJSRvPyx26UyYiiWKmbE5ejeG0FXau4legxdFvZhrXhd1KWHkadLXr5gl+0p4CJxUlIAKWpe/svthlhzEijMkJRtx45UJ0FCUczIOOdqSSKEh6hP2oYGiBPZSaZvjeGRUbqwFwpTgYJT9fdEgriUMfdNJ0dqIOe9ifif19aqd95JaBBpRQI8W9TTDKoQTjKCXSoIViw2BGFBza0QD5BAWJkkcyYEZ/7lRdKolJ2TcuXmtFC9SOPIggNwCIrAAWegCq5ADdQBBo/gGbyCN+vJerHerY9Za8ZKZ/bBH1ifP1AVn2k=</latexit>

Given	node	u,	predict	its	neighbor	 probabilities



Turn	into	a	loss	minimization

• Evaluate	P	as	

– Called	the	softmax function

minL =
X

u2V

X

v2N(u)

� logP (v|zu)
<latexit sha1_base64="gtevgmHX8IEElRZ817gdCc4Ao48=">AAACOXicbVDLSsNAFJ34tr6iLt0MFqEuLEkVdCOIblyIRLBVaEKYTKd16GQS5lGIMb/lxr9wJ7hxoYhbf8BJ24WvCzOce869zJwTpYxK5ThP1sTk1PTM7Nx8ZWFxaXnFXl1ryUQLTJo4YYm4jpAkjHLSVFQxcp0KguKIkauof1LqVwMiJE34pcpSEsSox2mXYqQMFdqe36EyZSiTKmME+jHl5kLqBiOWnxXwEPpSx2GufSO0ilEzgGV3XtPbBdyBPkt6uVcb3N2GhgjtqlN3hgX/AncMqmBcXmg/+p0E65hwhRmSsu06qQpyJBTFjBQVX0uSItxHPdI2kKOYyCAfOi/glmE6sJsIc7iCQ/b7Ro5iKbM4MpOlKflbK8n/tLZW3YMgpzzVinA8eqirGVQJLGOEHSoIViwzAGFBzV8hvkECYWXCrpgQ3N+W/4JWo+7u1hsXe9Wj43Ecc2ADbIIacME+OAKnwANNgME9eAav4M16sF6sd+tjNDphjXfWwY+yPr8Aa3CtOA==</latexit>

P (v|zu) =
exp(zTu zv)P

n2V exp(zTu zn)
<latexit sha1_base64="Ed+o5vWqXpg9EE0It1gz1gMps8E=">AAACNnicbVDLSsNAFJ34tr6qLt0MFqHdlEQF3QhFN26ECn0ITQ2T6Y0OTiZhZlJMY77Kjd/hzo0LRdz6CU4fiK8DFw7n3Mu99/gxZ0rb9pM1NT0zOze/sFhYWl5ZXSuub7RUlEgKTRrxSF74RAFnApqaaQ4XsQQS+hza/s3J0G/3QSoWiYZOY+iG5EqwgFGijeQVz9weUzEnqdIpB1wv9+8GXlLBR9gNJKGZC7dx2SiXWSMfeP1KnrkqCb1MuEzgVv5lNwaeqOResWRX7RHwX+JMSAlNUPeKj24vokkIQlNOlOo4dqy7GZGaUQ55wU0UxITekCvoGCpICKqbjd7O8Y5RejiIpCmh8Uj9PpGRUKk09E1nSPS1+u0Nxf+8TqKDw27GRJxoEHS8KEg41hEeZoh7TALVPDWEUMnMrZheExOXNkkXTAjO75f/ktZu1dmr7p7vl2rHkzgW0BbaRmXkoANUQ6eojpqIonv0hF7Qq/VgPVtv1vu4dcqazGyiH7A+PgHhFK07</latexit>



Stochastic	gradient	descent

• The	loss	minimization	can	be	done	as	SGD
• Take	vertices	in	random	order
– For	each	zu,	take	the	gradient	– the	direction	to	move	
u	to	decrease	loss

– Move	u	slightly	in	the	direction
• Repeat	with	a	different	random	order
• Until	convergence

• SGD	is	a	standard	stats	technique.	We	will	omit	
the	details





Practical	considerations

• Expensive	due	to	the	zuTzn term	that	requires	
comparison	with	all	vertices	

• Can	be	approximated	at	a	reduced	cost	by	
suitable	sampling.

• SGD	can	be	used	to	instead	train	a	neural	net	that	
suggests	coordinates
– Less	storage	than	storing	all	coordinates,	but	also	less	
accurate

• Paper:	Deepwalk.	Perozi et	al.
• Other	variants:
– Different	ways	of	conducting	the	random	walk



Applications	of	embedding

• Also	called	“representations”
• Representation	learning	is	an	important	area
• Representing	nodes	in	a	Euclidean	space	lets	
us	easily	apply	standard	machine	learning	
techniques
– Most	techniques	rely	on	Rd	Space	and	dot	
products

• Classification,	clustering	etc can	now	be	
performed	on	networks	



Embedding	of	attributed	social	
networks	

• Suppose	each	node	has	a	attributes	(e.g.	
hobbies,	interests	etc)

• The	ideal	embedding	should:
– Represent	similarity/dissimilarity	 of	attributes
– Represent	similarity/dissimilarity	 of	network	
position

• In	theory,	these	can	be	opposing	objective
• In	practice,	homophily means	these	are	
correlated



Attributed	network	embedding

• Minimize	loss	that	incorporates	probabilities	
of	right	neighbors	as	well	as	similar	attributes



Embedding	whole	graphs
• Suppose	there	is	a	database	of	molecules

– Each	node	has	attributes
• We	want	to	represent	each	as	a	points	in	Rd

– Such	that	similar	molecules	are	close
• Method	1:	

– Embed	each	as	graph,	then	take	the	mean

• Method	2:
– In	each	graph,	perform	random	walks	of	length	w	starting	at	

random	points
– Collect	neighborhood	sequence	at	each	graph
– Perform	embedding	so	that	attribute	sequences	seen	in	random	

walks	are	close



• Some	authors	like	to	distinguish	as	node	
embedding	vs	graph	embedding



Why	random	walks



Why	random	walks

• Saves	computation:	no	need	to	consider	all	pairs
• Known	to	capture	relevant	properties	of	
networks	like	community	structure
– Highly	connected	nodes	are	likely	to	be	close	in	
random	walks	

– Representative	of	diffusion	processes

• First	methods	were	inspired	by	NLP	methods	of	
sequences	in	text	– random	walk	gives	natural	
sequences



Embedding	networks	into	other	spaces

• Embedding	into	hyperbolic	spaces	is	a	popular	
research	area	these	days

• Other	significant	papers	on	embedding	into	
trees,	distributions	over	trees	etc

• Embedding	can	be	used	to	compare	networks
• E.g.	for	A	and	B
– If	good	embeddings A	->	B	and	B	->	A	exist,	then	A	
and	B	are	probably	similar.


