Network Embedding
Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Network Embedding

• Definition
 – Assignment of a coordinate to each node
 • $f(v)$ gives the coordinates of node v
 – In d dimensional space
 – Usually requires unique coordinate for each vertex

• Remember: Intrinsic and extrinsic metrics
 – Intrinsic metrics: distances that can be measured purely by walking along network edges. e.g. shortest path distance
 – Extrinsic: distances between vertices in the ambient space i.e. the d-dimensional Euclidean space
Network embedding

• Usually we are interested in distances between nodes (discrete)
• In some cases, points on the edges themselves may be relevant (continuous)
 – E.g. road networks
Example: suppose we want to preserve shortest path distances

• Can we embed:
 – An edge in a chain
 – A triangle in a line
 – A triangle in a 2d plane
 – A square in a 2d plane
 – A cycle in a 2d plane
Dimension Examples:

- Embedding cliques
- 1d clique: edge
- 2d clique: triangle
- 3d clique: tetrahedron

- “simplices” (cliques) are the minimal elements of various dimensions
Tree examples:

• Let’s take binary trees
• Can we embed them isometrically?
 – (while preserving all distances)
Challenges:

• Sources of problem: mismatch between intrinsic and extrinsic metrics
 – Cycles
 – Rapid branching and growth
 – High dimensions
Challenges

- Dimension of a graph is hard to characterize
- A triangle may not have 3-cliques
- Definition:
 - Subdivision: Slit an edge into two
 - Homeomorphism: Two graphs are homeomorphic if there is a way to subdivide one to get another
Challenges

• Summary: Embedding is hard
 – In general, the metric of the graph may not match with any Euclidean metric of fixed dimension. E.g. cycles, spheres, trees..
 – The right dimension d of the ambient space may be hard to decide
Theoretical results

• Smooth (See the Nash Embedding Theorem)
 – Certain classes (e.g. Riemannian manifolds of dimension) have nice (isometric or nearly isometric) embeddings in Euclidean spaces of \(\Omega(\text{poly}(d)) \) dimensions

• (this is a math topic. So we are stating this only vaguely. Ignore for exams.)
Distortion

• In reality, most embeddings are not perfect – they *distort* the distances

• Some distances contract, some expand

• For a metric space X with intrinsic distance d, and distance d' in the ambient (embedding space)

• Contraction: $\max_{x,y \in X} \frac{d(x, y)}{d'(f(x), f(y))}$

• Expansion: $\max_{x,y \in X} \frac{d'(f(x), f(y))}{d(x, y)}$

• Distortion = Contraction \times Expansion
Distortion

• Distortion = 1 means isometric

• Nice property: Uniform scaling gives distortion = 1
 – Verify
Johnson Lindenstrauss Lemma

• A set X which is n points in k-dim Euclidean space has an embedding in
 – Euclidean space of dim $O((\log n)/\varepsilon)$
 – with distortion at most $(1+\varepsilon)$.

• Algorithm:
 – Take $O((\log n)/\varepsilon)$ random unit vectors in \mathbb{R}^k
 – Project (take dot product) of points of X on these vectors
 – Now we have $O((\log n)/\varepsilon)$ dim representation of X
 – Has small distortion

• This is the basis of a lot of modern data science algorithms, including compressed sensing
Random walk based node embedding

- From each node u make many random walks of length w
- Count how many times every other node occurs in these random walks $N(u)$ (call them neighbors)
 - Estimate the probability of each nearby node occurring in these walks.
- Find embedding z, which maximizes:

$$\max_z \sum_u \log P(N(u)|z_u)$$

Given node u, predict its neighbor probabilities
Turn into a loss minimization

$$\min \mathcal{L} = \sum_{u \in V} \sum_{v \in N(u)} - \log P(v | z_u)$$

- Evaluate P as

$$P(v | z_u) = \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}$$

- Called the softmax function
Stochastic gradient descent

- The loss minimization can be done as SGD
- Take vertices in random order
 - For each z_u, take the gradient – the direction to move u to decrease loss
 - Move u slightly in the direction
- Repeat with a different random order
- Until convergence

- SGD is a standard stats technique. We will omit the details
Practical considerations

• Expensive due to the $z_u^T z_n$ term that requires comparison with all vertices
• Can be approximated at a reduced cost by suitable sampling.
• SGD can be used to instead train a neural net that suggests coordinates
 – Less storage than storing all coordinates, but also less accurate
• Paper: Deepwalk. Perozi et al.
• Other variants:
 – Different ways of conducting the random walk
Applications of embedding

• Also called “representations”
• Representation learning is an important area
• Representing nodes in a Euclidean space lets us easily apply standard machine learning techniques
 – Most techniques rely on \mathbb{R}^d Space and dot products
• Classification, clustering etc can now be performed on networks
Embedding of attributed social networks

• Suppose each node has attributes (e.g. hobbies, interests etc)

• The ideal embedding should:
 – Represent similarity/dissimilarity of attributes
 – Represent similarity/dissimilarity of network position

• In theory, these can be opposing objective

• In practice, homophily means these are correlated
Attributed network embedding

• Minimize loss that incorporates probabilities of right neighbors as well as similar attributes
Embedding whole graphs

• Suppose there is a database of molecules
 – Each node has attributes
• We want to represent each as a points in \mathbb{R}^d
 – Such that similar molecules are close
• Method 1:
 – Embed each as graph, then take the mean

• Method 2:
 – In each graph, perform random walks of length w starting at random points
 – Collect neighborhood sequence at each graph
 – Perform embedding so that attribute sequences seen in random walks are close
• Some authors like to distinguish as node embedding vs graph embedding
Why random walks
Why random walks

• Saves computation: no need to consider all pairs
• Known to capture relevant properties of networks like community structure
 – Highly connected nodes are likely to be close in random walks
 – Representative of diffusion processes
• First methods were inspired by NLP methods of sequences in text – random walk gives natural sequences
Embedding networks into other spaces

• Embedding into hyperbolic spaces is a popular research area these days
• Other significant papers on embedding into trees, distributions over trees etc
• Embedding can be used to compare networks
• E.g. for A and B
 – If good embeddings $A \rightarrow B$ and $B \rightarrow A$ exist, then A and B are probably similar.