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Network Embedding

e Definition
— Assignmentof a coordinate to each node
* f(v) gives the coordinates of node v
— In d dimensional space

— Usually requires unique coordinate for each
vertex

e Remember: Intrinsic and extrinsic metrics

— Intrinsic metrics: distances that can be
measured purely by walking along network
edges. e.g. shortest path distance

— Exterinsic: distances between vertices in the
ambientspacei.e. the d-dimensional
Euclidean space




Network embedding

Usually we are interestedin distances
oetween nodes (discrete)

n some cases, points on the edges themselves
may be relevant (continuous)

— E.g. road networks



Example: suppose we want to
preserve shortest path distances

* Can we embed:
— An edge in a chain
— A triangle in a line
— A triangle in a 2d plane
— A squarein a 2d plane

— A cyclein a 2d plane



Dimension Examples:

Embedding cliques
1d clique: edge
2d clique: triangle

3d clique: tetrahedreon

“simplices” (cliques) are the minimal elements
of various dimensions



Tree examples:

e Let’s take binary trees

e Can we embed them isometrically?
— (while preserving all distances)



Challenges:

e Sources of problem: mismatch between
intrinsic and extrinsic metrics
— Cycles
— Rapid branching and growth
— High dimensions



Challenges

 Dimension of a graph is hard
to characterize

* Atriangle may not have 3-
cliques

e Definition:
— Subdivision: Slit an edge into

two

— Homeomorphism: Two graphs
are homeomorphicif thereis a
way to subdivide one to get

another

o—o
u e V
O O




Challenges

Summary: Embedding is hard

— In general, the metric of the graph may not match
with any Euclidean metric of fixed dimension. E.g.
cycles, spheres, trees..

— The right dimension d of the ambient space may
be hard to decide



Theoretical results

 Smooth (See the Nash Embedding Theorem)

— Certain classes (e.g. Riemannian manifolds of d
dimension) have nice (isometric or nearly
isometric) embeddings in Euclidean spaces of
O(poly(d)) dimensions

* (this is a math topic. So we are stating this
only vaguely. Ignore for exams.)



Distortion

In reality, most embeddings are not perfect —
they distort the distances

Some distances contract, some expand

For a metric space X with intrinsic distance d, and
distance d’ in the ambient (embedding space)

Contraction:  max —4#:Y)
r,yeX d’(f(?),f(y))

_ o (@), fy)
Expansion: vyeX  d(z,y)

Distortion = Contraction * Expansion




Distortion

Distortion =1 means isometric

Nice property: Uniform scaling gives distortion
=1
— Verify



Johnson Lindenstrauss Lemma

* Aset X whichis n points in k-dim Euclidean space has a an
embedding in

— Euclidean space of dim O((log n)/¢)
— with distortion at most (1+¢).

e Algorithm:
— Take O((log n)/€) random unitvectors in RX

— Project (take dot product) of points of X on these vectors

— Now we have O((log n)/g) dim representation of X
— Has small distortion

* This is the basis of a lot of modern data science algorithms,
including compressed sensing



Random walk based node embedding

* From each node u make many random walks of length

W
* Count how many times every other node occurs in
these random walks N(u) (call them neighbors)
— Estimate the probability of each nearby node occurring in
these walks.

* Find embedding z, which maximizes:

max Z log P(N(u)|zy)

Given node u, predict its neighbor probabilities



Turn into a loss minimization

min £ = Z Z — log P(v|zy,)

ueV veN(u)
 Evaluate P as
(olzn) = Pl )
ZnEV eXp(Zu Z’fl)

— Called the softmax function




Stochastic gradient descent

The loss minimization can be done as SGD

Take vertices in random order

— For each z,, take the gradient — the direction to move
u to decrease loss

— Move u slightly in the direction
Repeat with a different random order
Until convergence

SGD is a standard stats technique. We will omit
the details
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Practical considerations

Expensive due to the z,'z, term that requires
comparison with all vertices

Can be approximated at a reduced cost by
suitable sampling.

SGD can be used to instead train a neural net that
suggests coordinates

— Less storage than storing all coordinates, but also less
accurate

Paper: Deepwalk. Perozi et al.

Other variants:
— Different ways of conductingthe random walk



Applications of embedding

Also called “representations”
Representation learning is an important area

Representing nodes in a Euclidean space lets
us easily apply standard machine learning
techniques

— Most techniques rely on R4Space and dot
products

Classification, clustering etc can now be
performed on networks



Embedding of attributed social
networks

e Suppose each node has a attributes (e.g.
hobbies, interests etc)

 The ideal embedding should:
— Represent similarity/dissimilarity of attributes

— Represent similarity/dissimilarity of network
position

* In theory, these can be opposing objective

* |n practice, homophily means these are
correlated



Attributed network embedding

 Minimize loss that incorporates probabilities
of right neighbors as well as similar attributes



Embedding whole graphs

Suppose there is a database of molecules
— Each nodehas attributes

We want to represent each as a points in R®
— Such that similar molecules are close

Method 1:
— Embed each as graph, then take the mean

Method 2:

— In each graph, perform random walks of length w starting at
random points

— Collect neighborhoodsequence at each graph

— Perform embeddingso that attribute sequences seen in random
walks are close



* Some authors like to distinguish as node
embedding vs graph embedding



Why random walks



Why random walks

* Saves computation: no need to considerall pairs

 Known to capture relevant properties of
networks like community structure

— Highly connected nodes are likely to be close in
random walks

— Representative of diffusion processes

* First methods were inspired by NLP methods of
sequences in text — random walk gives natural
sequences



Embedding networks into other spaces

* Embedding into hyperbolic spaces is a popular
research area these days

e Other significant papers on embedding into
trees, distributions over trees etc

* Embedding can be used to compare networks

e E.g. forAandB

— If good embeddings A -> B and B -> A exist, then A
and B are probably similar.



