Network Embedding Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Network Embedding

- Definition
- Assignment of a coordinate to each node
- $f(v)$ gives the coordinates of node v
- In d dimensional space
- Usually requires unique coordinate for each vertex
- Remember: Intrinsic and extrinsic metrics
- Intrinsic metrics: distances that can be measured purely by walking along network edges. e.g. shortest path distance
- Exterinsic: distances between vertices in the ambient space i.e. the d-dimensional Euclidean space

Network embedding

- Usually we are interested in distances between nodes (discrete)
- In some cases, points on the edges themselves may be relevant (continuous)
- E.g. road networks

Example: suppose we want to preserve shortest path distances

- Can we embed:
- An edge in a chain
- A triangle in a line
- A triangle in a 2 d plane
- A square in a 2d plane
- A cycle in a 2 d plane

Dimension Examples:

- Embedding cliques
- 1d clique: edge
- 2d clique: triangle
- 3d clique: tetrahedreon

- "simplices" (cliques) are the minimal elements of various dimensions

Tree examples:

- Let's take binary trees
- Can we embed them isometrically?
- (while preserving all distances)

Challenges:

- Sources of problem: mismatch between intrinsic and extrinsic metrics
- Cycles
- Rapid branching and growth
- High dimensions

Challenges

- Dimension of a graph is hard to characterize
- A triangle may not have 3cliques
- Definition:
- Subdivision: Slit an edge into two
- Homeomorphism: Two graphs are homeomorphic if there is a
 way to subdivide one to get another

Challenges

- Summary: Embedding is hard
- In general, the metric of the graph may not match with any Euclidean metric of fixed dimension. E.g. cycles, spheres, trees..
- The right dimension d of the ambient space may be hard to decide

Theoretical results

- Smooth (See the Nash Embedding Theorem)
- Certain classes (e.g. Riemannian manifolds of d dimension) have nice (isometric or nearly isometric) embeddings in Euclidean spaces of O (poly(d)) dimensions
- (this is a math topic. So we are stating this only vaguely. Ignore for exams.)

Distortion

- In reality, most embeddings are not perfect they distort the distances
- Some distances contract, some expand
- For a metric space X with intrinsic distance d, and distance d^{\prime} in the ambient (embedding space)
- Contraction: $\max _{x, y \in X} \frac{d(x, y)}{d^{\prime}(f(x), f(y))}$
- Expansion: $\max _{x, y \in X} \frac{d^{\prime}(f(x), f(y))}{d(x, y)}$
- Distortion = Contraction * Expansion

Distortion

- Distortion = 1 means isometric
- Nice property: Uniform scaling gives distortion
= 1
- Verify

Johnson Lindenstrauss Lemma

- A set X which is n points in k-dim Euclidean space has a an embedding in
- Euclidean space of $\operatorname{dim} O((\log n) / \varepsilon)$
- with distortion at most $(1+\varepsilon)$.
- Algorithm:
- Take $O((\log n) / \varepsilon)$ random unit vectors in R^{k}
- Project (take dot product) of points of X on these vectors
- Now we have O(($\log n) / \varepsilon)$ dim representation of X
- Has small distortion
- This is the basis of a lot of modern data science algorithms, including compressed sensing

Random walk based node embedding

- From each node u make many random walks of length W
- Count how many times every other node occurs in these random walks $N(u)$ (call them neighbors)
- Estimate the probability of each nearby node occurring in these walks.
- Find embedding z, which maximizes:

$$
\max _{z} \sum_{u} \log P\left(N(u) \mid z_{u}\right)
$$

Given node u, predict its neighbor probabilities

Turn into a loss minimization

$$
\min \mathcal{L}=\sum_{u \in V} \sum_{v \in N(u)}-\log P\left(v \mid z_{u}\right)
$$

- Evaluate P as

$$
P\left(v \mid z_{u}\right)=\frac{\exp \left(z_{u}^{T} z_{v}\right)}{\sum_{n \in V} \exp \left(z_{u}^{T} z_{n}\right)}
$$

- Called the softmax function

Stochastic gradient descent

- The loss minimization can be done as SGD
- Take vertices in random order
- For each z_{u}, take the gradient - the direction to move u to decrease loss
- Move u slightly in the direction
- Repeat with a different random order
- Until convergence
- SGD is a standard stats technique. We will omit the details

(a) Input: Karate Graph

(b) Output: Representation

Practical considerations

- Expensive due to the $z_{u}{ }^{\top} z_{n}$ term that requires comparison with all vertices
- Can be approximated at a reduced cost by suitable sampling.
- SGD can be used to instead train a neural net that suggests coordinates
- Less storage than storing all coordinates, but also less accurate
- Paper: Deepwalk. Perozi et al.
- Other variants:
- Different ways of conducting the random walk

Applications of embedding

- Also called "representations"
- Representation learning is an important area
- Representing nodes in a Euclidean space lets us easily apply standard machine learning techniques
- Most techniques rely on R^{d} Space and dot products
- Classification, clustering etc can now be performed on networks

Embedding of attributed social networks

- Suppose each node has a attributes (e.g. hobbies, interests etc)
- The ideal embedding should:
- Represent similarity/dissimilarity of attributes
- Represent similarity/dissimilarity of network position
- In theory, these can be opposing objective
- In practice, homophily means these are correlated

Attributed network embedding

- Minimize loss that incorporates probabilities of right neighbors as well as similar attributes

Embedding whole graphs

- Suppose there is a database of molecules
- Each node has attributes
- We want to represent each as a points in R^{d}
- Such that similar molecules are close
- Method 1:
- Embed each as graph, then take the mean
- Method 2:
- In each graph, perform random walks of length w starting at random points
- Collect neighborhood sequence at each graph
- Perform embedding so that attribute sequences seen in random walks are close
- Some authors like to distinguish as node embedding vs graph embedding

Why random walks

Why random walks

- Saves computation: no need to consider all pairs
- Known to capture relevant properties of networks like community structure
- Highly connected nodes are likely to be close in random walks
- Representative of diffusion processes
- First methods were inspired by NLP methods of sequences in text - random walk gives natural sequences

Embedding networks into other spaces

- Embedding into hyperbolic spaces is a popular research area these days
- Other significant papers on embedding into trees, distributions over trees etc
- Embedding can be used to compare networks
- E.g. for A and B
- If good embeddings A -> B and B -> A exist, then A and B are probably similar.

