Community detection and clustering

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Communities

- Groups of friends
- Colleagues/collaborators
- Web pages on similar topics
- Biological reaction groups
- Similar customers/users ...

Other applications

- A coarser representation of networks
- One or more meta-node for each community
- Identify bridges/weak-links
- Structural holes

Community detection

- Given a network
- What are the "communities"
 - Closely connected groups of nodes
 - Relatively few edges to outside the community

- Similar to clustering in data sets
 - Group together points that are more close or similar to each other than other points

Definitions of communities

Varies. Depending on application

- General idea: Dense subgraphs: More links within community, few links outside
- Some types and considerations:
 - Partitions: Each node in exactly one community
 - Overlapping: Each node can be in multiple communities
 - We will usually consider partitions

Comment: Finding dense subgraphs is hard in general

- Finding largest clique
 - NP-hard
 - Computationally intractable
- Decision version: Does a clique of size k exist?
 - Also NP-complete
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist
- We will look for approximations

Dense subgraphs: Few preliminary definitions

- For S, T subgraphs of V
- e(S,T): Set of edges from S to T
 - -e(S) = e(S,S): Edges within S
- d_s(v): number of edges from v to S
- Edge density of S: |e(S)|/|S|
 - Largest for complete graphs or cliques

Dense subgraph Problem

- Find the subgraph with largest edge density
- There also exists a decision version:
 - Is there a subgraph with edge density $> \alpha$
- Can be solved using Max Flow algorithms
 - O(n²m): inefficient in large datasets
 - Finds the one densest subgraph
- Variant: Find densest S containing given subset X
- Other versions: Find subgraphs size k or less
- NP-hard

Efficient approximation for finding dense S containing X

```
Let G_n \leftarrow G.

for k = n downto |X| + 1 do

Let v \notin X be the lowest degree node in G_k \setminus X.

Let G_{k-1} \leftarrow G_k \setminus \{v\}.

Output the densest subgraph among G_n, \ldots, G_{|X|}.
```

- Gives a 1/2 approximation
- Edge density of output S set is at least half of optimal set S*
- (Proof in Kempe 2018: http://www-bcf.usc.edu/~dkempe/teaching/structure-dynamics.pdf).

Betweenness & graph partitioning

- We want to split network into tightly knit groups (communities etc)
- Idea: Identify the edges connecting different communities and remove them
- These edges are "central" to the network
 - They lie on shortest paths
- Betweenness of edge (e) (can be considered for vertex (v)):
 - We send 1 unit of traffic between every pair of nodes in the network
 - measure what fraction passes through e, assuming the flow is split equally among all shortest paths.

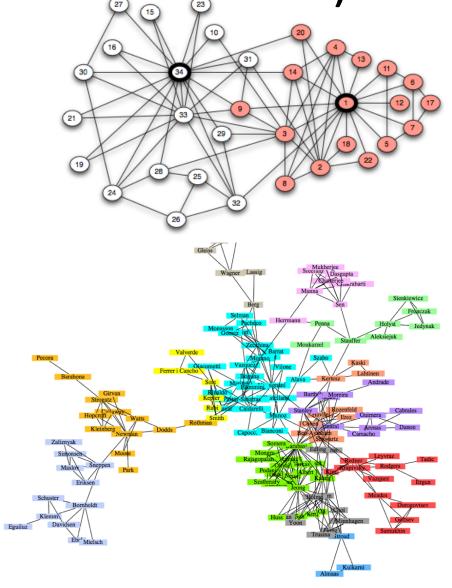
Computing betweenness

- Computing all shortest paths separately is inefficient
- A more efficient way:
- From each node:
 - Step 1: Compute BFS tree
 - Step 2: Find number of shortest paths to each node
 - Step 3: Find the flow through each edge
 - See kleinberg-Easley for detailed algorithm

Partitioning (Girvan-newman)

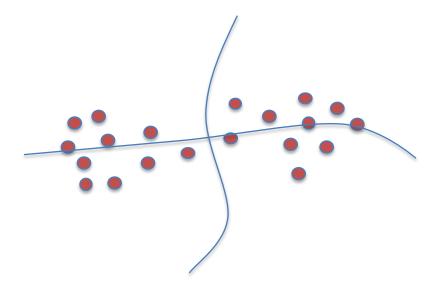
Repeat:

- Find edge e of highest betweenness
- Remove e
- Produces a hierarchic paritioning structure as the graph decomposes into smaller components
- Network version of hierarchic clustering



Modularity

- How do we evaluate the quality of detected communities?
 - How do you say the vertical cut is better than the horizontal cut?
- Idea: Maximize a quantity called modularity



Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$d_1, d_2, d_3, \dots d_n$$

- At each vertex i we d_i open-edges
- Pair up the edges randomly
- Given a graph G, we can construct a random graph G' with same degrees but random edges

Modularity of subset S of V

- Given the graph G
- Consider a random G' graph with same node degrees
 - Number of edges in S in G: |e(S)|_G
 - Expected number of edges in S in G': $E[|e(S)|_{G'}]$
 - Modularity of S: $|e(S)|_G$ $E[|e(S)|_{G'}]$
 - More coherent communities have more edges inside than would be expected in a random graph with same degrees
 - Note: modularity can be negative

Modularity of a clustering

- Take a partition (clustering) of V: $\mathcal{P} = \{S_1, \ldots, S_k\}$
- Write d(S_i) for sum of degrees of all nodes in S_i
- It can be shown that $E[|e(S)|_{G'}] \approx d(S_i)^2$
- Definition: Sum over the partition:

$$q(\mathcal{P}) = \frac{1}{m} \sum_{i} |e(S_i)|_G - \frac{1}{4m} d(s_i)^2$$

•

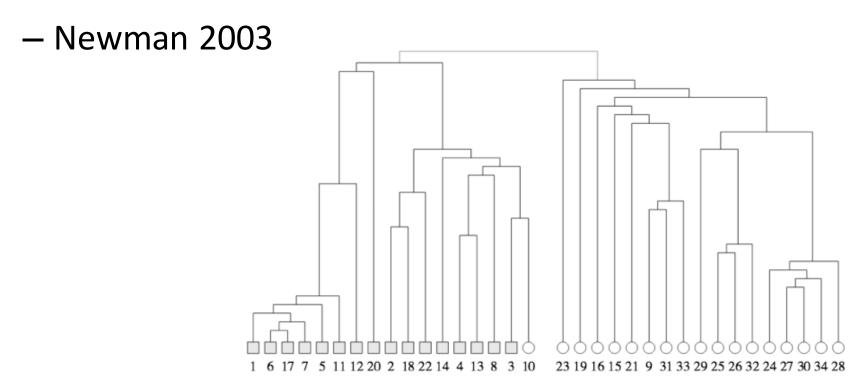
- Can be used as a stopping criterion (or finding right level of partitioning) in hierarchicmethods
 - Eg. Girvan-newman

Modularity based clustering

- Modularity is meant for use more as a measure of quality, not so much as a clustering method
- Finding clustering with highest modularity is NP-hard
- Heuristic: Louvain method:
 - Place each node in its own community
 - For each community, consider merging with neighbor.
 - Make the greedy choice make the merge that maximizes modularity
 - Or do not merge if none increases modularity
 - Repeat
- Note: Modularity is a relative measure for comparing community structure.
- Not entirely clear in which cases it may or may not give good results
- A threshold of 0.3 or more is sometimes considered to give good clustering

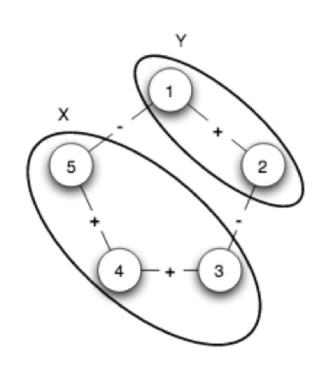
Karate club hierarchic clustering

 Shape of nodes gives actual split in the club due to internal conflicts



Correlation clustering

- Some edges are known to be similar/friends/trusted
- marked "+"
- Some edges are known to be dissimilar/enemies/distrus ted
- marked "-"
- Maximize the number of + edges inside clusters and
- Minimize the number of edges between clusters



Applications

- Community detection based on similar people/users
- Document clustering based on known similarity or dissimilarity between documents
- Use of sentiments and/or other divisive attributes

Features

- Clustering without need to know number of clusters
 - k-means, medians, clusters etc need to know number of clusters or other parameters like threshold
 - Number of clusters depends on network structure
- Actually, does not need any parameter
- NP hard
- Note that graph may be complete or not complete
 - In some applications with unlabeled edges, it may be reasonable to change edges to "+" edges and non-edges to "-" edges

Approximation

- Naive 1/2 approximation:
 - If there are more + edges
 - Put them all in 1 cluster
 - If there are more edges
 - Put nodes in n different clusters
- (not very useful)!

Better approximations

- 2 ways of looking at it:
 - Maximize agreement or Minimize disagreement
 - Similar idea, but we know different approximation algorithms
- Nikhil Bansal et al. develop PTAS (polynomial time approximation scheme) for maximizing agreement:
 - (1-ε) approximation, running time $O(n^2 \mathrm{e}^{O(1/\epsilon)})$
- Min-disagree:
 - 4-approximation

Local detection of communities

- Suppose there is a huge graph, like www, or facebook network
- We often want to find the community that contains a particular node or group
 - E.g. to make recommendations: "your friends have watched this movie..."
 - To infer preferences and attributes
- Running a full scale community detection is computationally impractical
- We do not know the number of communities

Conductance: measure of edges inside community vs outside

- Given subsets S, T in V
- e(S,T): set of edges between S and T
- Volume of edges: $vol(S) = \sum_{v \in S} d(v)$
- Conductance of S is defined as:

$$\Phi(S) := \frac{e(S, \overline{S})}{\min(vol(S), vol(\overline{S}))}$$

Communities are likely to have low conductance

Personalised pagerank

- Given a seed set X
- Find the community S that contains X
- Pagerank style: Use random walks
- Algorithm
 - Set a limit k to number of steps in random walks
 - Repeat:
 - Select at random a start point from X
 - Take k random steps in the graph
 - Count how frequently each node occurs pagerank
 - Nodes in the community have high pagerank

Personalised pagerank

- Alternative Algorithm
 - Set a probability to reset random walk
 - Repeat:
 - Select at random a start point from X
 - With probability 1ε move to a random neighbor
 - With probability ε move to a random node in X
 - Count how frequently each node occurs pagerank
 - Nodes in the community have high pagerank

Personalised pagerank

- Communities have low conductance
- Therefore, short random walks will leave the community only rarely
- Therefore, nodes in the community of X will have high pagerank compared to those outside
- It can be proved that if X is in a low conductance community, nodes outside this community will occur infrequently.
 - We will omit this proof

Community detection by clustering

- First, define a metric between nodes
 - Either compute intrinsic metrics like all pairs shortest paths [Floyd-Warshall algorithm O(n³)]
 - Or embed the nodes in a Euclidean space, and use the metric there
 - We will later study embedding methods
- Apply a clustering algorithm with the metric

Clustering

- A core problem of machine learning:
 - Which items are in the same group?
- Identifies items that are similar relative to rest of data
- Simplifies information by grouping similar items
 - Helps in all types of other problems

Clustering

- Outline approach:
- Given a set of items
 - Define a distance between them
 - E.g. Euclidean distance between points in a plane; Euclidean distance between other attributes; non-euclidean distances; path lengths in a network; tie strengths in a network...
 - Determine a grouping (partitioning) that optimises some function (prefers 'close' items in same group).
- General references for clustering:
 - Charu Aggarwal: The Data Mining Textbook, Springer
 - Free on Springer site (from university network)
 - Blum et al. Foundations of Data Science (free online)

K-means clustering

- Find k-clusters $\mathcal{C} = \{C_1, \dots, C_k\}$
 - With centers $\mathbf{c}_1, \dots, \mathbf{c}_k$

 That minimize the sum of squared distances of nodes to their cluster centers (called the k-means cost)

$$\Phi_{kmeans}(\mathcal{C}) = \sum_{j=1}^{k} \sum_{\mathbf{a}_i \in C_j} d^2(\mathbf{a}_i, \mathbf{c}_j)$$

K-means clustering: Lloyd's algorithm

- There are n items
- Select k 'centers'
 - May be random k locations in space
 - May be location of k of the items selected randomly
 - May be chosen according to some method
- Iterate till convergence:
 - Assign each item to the cluster for its closest center
 - Recompute location of center as the mean location of all elements in the cluster (their centroid)
 - Repeat
- Warning: Lloyd's algorithm is a Heuristic. Does not guarantee that the k-means cost is minimised

K-means

- Visualisations
- http://stanford.edu/class/ee103/visualizations/ /kmeans/kmeans.html

http://shabal.in/visuals/kmeans/1.html

K-means

- Ward's algorithm (also Heuristic)
 - Start with each node as its own cluster
 - At each round, find two clusters such that merging them will reduce the k-means cost the most
 - Merge these two clusters
 - Repeat until there are k-clusters

K means: discussion

- Tries to minimise squared sum of distances of items to cluster centers
 - NP-hard. Computationally intractable
 - Algorithm gives local optimum
- Depends on initialisation (starting set of centers)
 - Can give poor results
 - Submodular optimisation can help
- The right 'k' may be unknown
 - Possible strategy: try different possibilities and take the best
- Can be improved by heuristics like choosing centers carefully
 - E.g. choosing centers to be as far apart as possible: choose one, choose point farthest to it, choose point farthest to both (maximise min distance to existing set etc)...
 - Try multiple times and take best result..

K-medoids

- Similar, but now each center must be one of the given items
 - In each cluster, find the item that is the best 'center' and repeat
- Useful when there is no ambient space (extrinsic metric)
 - E.g. A distance between items can be computed between nodes, but they are not in any particular Euclidean space, so the 'centroid' in Lloyd's algorithm is not a meaningful point

Other center based methods

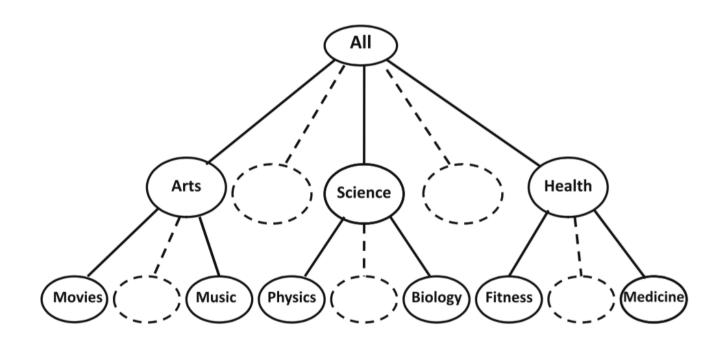
• K-center: Minimise maximum distance to center: $\Phi_{kcenter}(\mathcal{C}) = \max_{j=1}^k \max_{\mathbf{a}_i \in C_j} d(\mathbf{a}_i, \mathbf{c}_j)$

• K-median: Minimise sum of distances:

$$\Phi_{kmedian}(\mathcal{C}) = \sum_{j=1}^{k} \sum_{\mathbf{a}_i \in C_j} d(\mathbf{a}_i, \mathbf{c}_j)$$

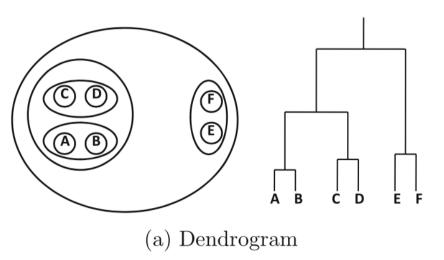
Hierarchical clustering

- Hierarchically group items
- Using some standard clustering method



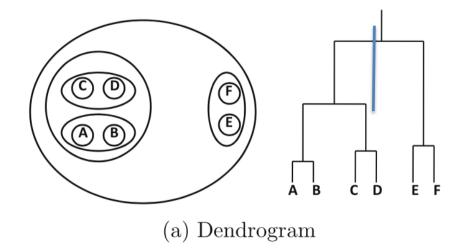
Hierarchical clustering

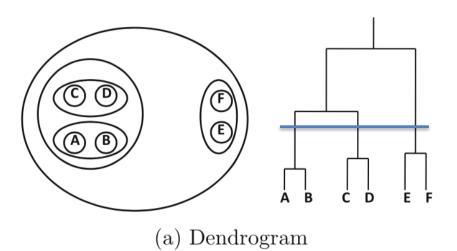
- Top down (divisive):
 - Start with everything in 1 cluster
 - Make the best division, and repeat in each subcluster
- Bottom up (agglomerative):
 - Start with n different clusters
 - Merge two at a time by finding pairs that give the best improvement



Hierarchical clustering

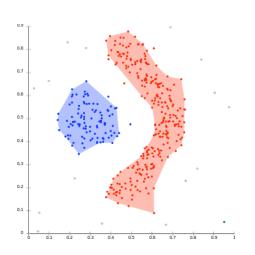
- Gives many options for a flat clustering
- Problem: what is a good 'cut' of the dendogram?

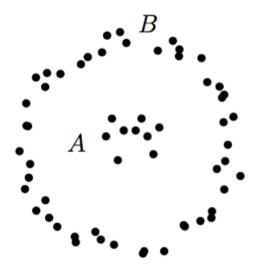




Density based clustering

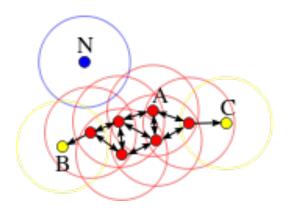
- Group dense regions together
- Better at non-linear separations
- Works with unknown number of clusters





DBSCAN

- Density at a data point:
 - Number of data points within radius Eps
- A core point:
 - Point with density at least τ
- Border point
 - Density less than τ, but at least one core point within radius Eps
- Noise point
 - Neither core nor border. Far from dense regions



Algorithm

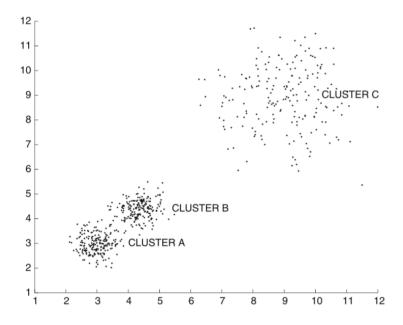
- Construct UDG of core points
- Connected components of the graph give the clusters
- Assign border points to suitable clusters (E.g. to the cluster to which it has most edges)

Algorithm $DBSCAN(Data: \mathcal{D}, Radius: Eps, Density: \tau)$ begin

Determine core, border and noise points of \mathcal{D} at level (Eps, τ) ; Create graph in which core points are connected if they are within Eps of one another; Determine connected components in graph; Assign each border point to connected component with which it is best connected; return points in each connected component as a cluster; end

DBSCAN: Discussions

- Requires knowledge of suitable radius and density parameters (Eps and τ)
- Does not allow for possibility that different clusters may have different densities



DBSCAN

 Useful in cases where it is clear which objects can be considered similar but number of clusters is not known

- Known to perform very well in real problems
- Worst case complexity: O(n²)
- Current research: Making faster in special cases, approximations, distributed algorithms.

Other density based clustering

- Single linkage (same as Kruskal's MST algorithm)
 - Start with n clusters
 - Merge two clusters with the shortest bridging link
 - Repeat until k clusters

Other, more robust methods exist

Community detection in networks

- A simple strategy:
 - Choose a suitable distance measure based on available data
 - E.g. Path lengths; distance based on inverse tie strengths; size of largest enclosing group or common attribute; distance in a spectral (eigenvector) embedding; etc..
 - Apply a standard clustering algorithm

Clustering is not always suitable in networks

- Small world networks have small diameter
 - And sometime integer distances
 - A distance based method does not have a lot of option to represent similarities/dissimilarities
- High degree nodes are common
 - Connect different communities
 - Hard to separate communities
- Edge densities vary across the network
 - Same threshold does not work well everywhere