Classification

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Assign labels to unlabeled vertices

- Vertices are labeled
 - White: 0
 - Black: 1
 - Grey: Unknown

• Determine labels for grey vertices

Assign labels to unlabeled vertices

 Semi-supervised learning

• Example query points are known (vertices)

But their labels are not known

Attribute labelling is possible

- Because of homophily
- Nodes with similar attributes are more likely to be connected, and vice versa
- Nodes in the same community are more likely to have similar labels
- Labels depend on other labels, labels of neighbors

Examples

- People of the same race are more often connected (see Easleykleinberg)
- Malicious web sites link to other malicious web sites
- Sites on a topic link to other sites on the topic

Other applications

- Document classification
- Tagging
- Link pregiction
- Image/data segmentation
- Spam and fraud detection

Iterative weighted averaging

- Weights w of edges
- Labels L of nodes
 - Labeled node x: L(x) = Label(x)
 - Unlabeled nodes u: L(u) = 0.1 (or any fixed value)
- For *Unlabeled* node u with neighbors N(u)

-Set
$$L(u) = \frac{1}{\sum_{v \in N(u)} w(u, v)} \sum_{v \in N(u)} w(u, v) L(v)$$

Repeat

• Each node gets a label in range [0, 1]

- To get binary labels
- Set a threshold, e.g. 0.5.
- And
 - If L(u) \leq 0.5, set Label(u) = 0
 - If L(u) > 0.5, set Label(u) = 1
- Note that prior labeled nodes stay as they were

Special case

- Unweighted graph
- All weights = 1
- L(u) is just average of neighbor labels
 Including itself, if defined that way
- Called Harmonic functions
- Convergence guaranteed

Multiple attributes

- Suppose there are multiple attributes/labels
- There may be correlations between labels
- How do we make use of these attributes?

Multiple attributes

- Learn a local classifier function f
 - E.g. SVM, kNN,
 - Takes a vector A of node labels and outputs a suggested class
- Repeat for each node with unknown label
 - Compute a vector A of neighbor labels
 - With aggregate values of neighbor labels
 - E.g. with mean values, median, etc...
 - Repeat until convergence or MAX iterations
 - (since convergence is not guaranteed)