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Abstract

Creating the best routes for self-driving cars acting like buses is difficult with so many
constraints and variables to optimize. This report describes the problem in detail and
how it can be solved using approximation algorithms, with an example using NYC taxi
trip data and algorithms implemented in the Python programming language.

1 Introduction

As autonomous vehicles become closer to entering the mass market, cities must be able to utilize
them effectively in order to capitalize on their potential cost savings. This paper will describe a
methodology through which the most effective routes can be generated given historical location
data from taxis already servicing a city. Let’s begin by formally defining the problem we are
trying to solve.

1.1 Problem Statement

Suppose we have k self-driving cars to deploy. Suppose we are also given pickup and dropoff
locations (i.e. two pairs of latitude and longitude coordinates) representing taxi trips taken in
the area over a set period of time (e.g. a year).

Let S represent the set of points corresponding to ”stops” for these self-driving cars to drive
between, picking up and dropping off passengers at each stop. The number of stops |S| is some
positive constant integer cS. Let G be a completely connected, undirected graph with V = S.
A valid route r is defined as any valid path you can find within graph G. Note that a path
need not be cyclical (as the car can simply go along the same route backwards).

Furthermore, assume every traveller is willing to walk (from the pickup location) to a nearby
stop at most a radius of some constant distance d metres away.

Now, our problem is as follows: how can we define routes for our k cars such that:

1. The stops maximize the number of travellers it can service (i.e. cover as many pickup/dropoff
points within a circle of radius d with cS stops), and

2. distribute the k self-driving cars such that at least one car will service every stop while
minimizing the total distance that the k self-driving cars will drive (thus minimizing gas
costs, the most significant variable cost for self-driving cars).

This problem is challenging because we are trying to optimize multiple variables at once,
namely coverage and distance travelled by the self-driving cars. It turns out that several parts
of this problem are in fact intractable; therefore, we will have to make several assumptions
when devising a solution.
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2 Related Work

Optimization of Bus Route Planning in Urban Commuter Networks is a paper by Steven I-Jy
Chien, Branislav V. Dimitrijevic, and Lazar N. Spasovic about a similar topic. However, the
biggest difference is that the paper attempts to optimize different variables (e.g. driver costs,
trip times, size of network) and that they assume passengers can board a bus anywhere along
its route, ignoring bus stops entirely.

The Maximum Coverage Problem, a thesis by Ymro Nils Hoogendoorn, covers various al-
gorithms designed to create near-optimal solutions to the NP-hard problem. One particular
algorithm, one involving the Lagrange Multiplier, is used in the solution.

Bus route planning in general is a well-studied topic as most city planners will have consid-
ered this problem. However, this paper focuses on different constraints and optimizes different
costs due to the fact that we are dealing with driverless cars.

3 Solution

We attempt to solve this problem given a real dataset — taxi trips recorded by the NYC Taxi
and Limousine Commission in 2013 — with the following assumptions:

3.1 Assumptions

1. The number of self-driving cars to deploy is k = 4.

2. The number of stops to place is cS = 20.

3. The maximum distance the average person is willing to walk is d = 319 metres (taken from
this article.

4. Our input location data specifies pickup or dropoff points, but we will treat them equally as-
suming there no large-scale patterns of movement from one area to another (i.e. everyone
goes everywhere in NYC).

5. Cars have infinite capacity and car rides take a significantly better-than-taxiing time and
cost, meaning as long as a bus stop is within a traveller’s maximum willingness-to-walk
radius, he/she will always choose to bus.

6. Stops will be placed at pickup/dropoff points, even though in real life this doesnt necessarily
have to be the case (e.g. a stop could be somewhere between two pickup points).

All of the corresponding code to the solution can be found in the IPython notebook ”STN-
2018-Project”. It has been annotated to match up with each section of the solution below. To
ensure reasonably fast calculations, the notebook relies on a small 97-trip sample of the full
2013 taxi dataset. The full dataset is a massive 3.8GB (downloadable through the link at the
beginning of the section), making it way too large for such heavy computation without the help
of a cloud computing architecture.

3.1.1 Visualizing Taxi Data

First, to get a handle of the data, we must first visualize the pickup/dropoff points. Figure 1
below is what our small 96-trip sample looks like when plotted based on latitude and longitude,
the extrinsic metrics.
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Figure 1: Pickup points (red nodes) and dropoff points (blue nodes), connected by an edge
if they are part of the same taxi trip. Note how most nodes are concentrated in one area,
meaning that we can treat pickup and dropoff points equally as travellers appear to go both
ways anyway. For a much more detailed view, check the IPython notebook.

3.1.2 Coverage Created by a Potential Stop (Maximum Coverage Problem)

Now that we have a graph with n nodes — a node for every pickup/dropoff point — we can
consider what subset of these n nodes of size cs will maximize coverage of other pickup/dropoff
points given coverage by any one stop is defined by a circle of radius d. This is also known as the
Maximum Coverage Problem, which is unfortunately intractable (i.e. NP-hard). We can instead
use a mathematical technique called Lagrangian Relaxation to get a decent approximation. An
existing online Python implementation is used.

3.1.3 Generating Optimal Routes (Vehicle Routing Problem)

Lastly, now that we have chosen our stops S, we just need another algorithm to generate the
best routes for our k self-driving cars in order to minimize total distance, pass by every stop at
least once, and start/end at the same location (where the cars come to recharge at night). This
problem is known as the Vehicle Routing Problem, a generalization of the Travelling Salesman
Problem, i.e. with multiple salesmen. This problem is also intractable, so we use Google’s
OR-Tools library for the best approximation algorithm.

4 Results

Using the Lagrangian Relaxation method, the algorithm picked a set of stops that covered
61.34% of all pickup/dropoff points in the dataset. This seems like a pretty positive result
given that many points lay way beyond the concentrated area of most points and only 20
stops were used for over 194 pickup/dropoff points. This immediately improves to 71.13%
and 78.35% coverage with 30 and 40 stops, respectively, which is even better coverage. The
IPython notebook includes a graph of this increasing relationship and appears roughly linear.

Using Google’s VRP algorithm, each car (out of a total of k = 4) created a route with
an average distance of 8,172 meters. These seem to be fairly optimal routes considering the
average distance from the home base (where all cars started their routes) to just one other stop
was 2,819 meters. Full statistics with relevant annotations can be also found in the IPython
notebook.

All in all, this data is limited in that it was ran on an extremely small part of a much larger
dataset. If these approximation algorithms could be computed using a robust cloud computing
infrastructure, we may be able to get a better idea of how close to optimal these algorithms
are, giving us evidence that these algorithms may have practical value.
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