
STN Project: ’2 Degrees’ Movie Recommendation System

Simon Thorogood (s1881004)

Abstract
Community detection in actor collaboration
graphs was explored as basis for movie recom-
mendation. A number of techniques for commu-
nity detection were implemented and compared
in the context of this task. Though it was not pos-
sible to fully verify the validity of the approach
in the time available, high-level characteristics of
the approach were examined and directions for
useful future research were identified.

1. Introduction
Movie recommendation systems typically take as input
what a user has watched previously (and possibly also up-
voted or rated positively) and finds other movies that they
might also enjoy based on some measure of similarity. For
online video services such as Netflix or Amazon Prime,
they are a vital tool for driving the retention of user.

In this project, we explored an approach to recommenda-
tion whereby movies are matched based on relationships
between the actors that appear in them. Specifically, we
hypothesise that the detection of communities of actors
in collaboration networks could yield a useful and poten-
tially novel measure of film similarity for the purpose of
recommendation.

A community (or cluster) can be defined as being a set of
nodes within a network that are more density connected to
one another than they are to other nodes within the network.
Community detection is a popular topic in network research
and many approaches to the problem exist. As part of this
project a number of techniques were evaluated with regards
to the recommendation problem outlined above.

The project was undertaken jointly between myself, and 2
other students: Sitthinut Kumpalanuwat (s1773493) and Ce-
cilia Cobos Santes (s1826598). In terms of the breakdown
of tasks, I was responsible for the initial data extraction and
analysis of the collaboration graph, for implementing a clus-
tering method based on DBSCAN and for the development
of a recommendation engine that utilised the communities
detected in the graph. I also developed an alternative rec-
ommendation system based on the Personalised Page Rank
algorithm.

2. Related Work
The use of clustering in recommendation task is well-known
(Pham et al., 2011), (Mittal et al., 2010) but to date we are

not aware of any second-degree content-based approach
similar to the one proposed here. Personalised Page Rank
has also been applied to the task of recommendation previ-
ously (Haveliwala) though again, in a quite different context
to the one here.

3. Approach and Methods
The approach taken can be summarised as follows. If a user
has watched film A staring actor X, it should be possible
to identify other actors (e.g. actors Y & Z) who are not in
the original film but who share a detected community with
actor X. These related actors can then be used to identify
and recommend new films to the user based on the movies
that they have appeared in.

A snapshot of the IMDB dataset (IMDb.com, 2018) was
selected for the project. The dataset is updated daily and
contains details of over 5 million titles including details of
the cast and crew involved in each title. Actors are recorded
up to a maximum of 10 per title.

In order to produce an actor collaboration graph of a man-
agable size on which to perform community detection, the
following processing and filtering steps were first carried
out.

The titles dataset was filtered to exclude non-movie titles
(e.g. TV Shows). The date range was also limited to reduce
the number of titles to be considered. The cast and crew
dataset was filtered to exclude non-acting roles (e.g. direc-
tors) and only actors with credits for at least 3 movies were
considered. After applying these constraints, a set of actor-
actor collaboration graph edges was extracted including a
count of the number of movies in which they co-starred.
Two graph edge datasets were produced:

1. movie_star_edges_80s: A larger set containing edges
derived from all movies released in the 1980s. This
dataset contains 12,412 nodes (actors) and 121,546
edges

2. movie_star_edges_1980: A smaller set used for pro-
totyping containing edges from a subset of movies
released in 1980. This dataset contains 3,906 nodes
(actors) and 10,036 edges.

NetworkX was used to import the edge data and con-
struct a graph. An initial analysis of the larger
movie_star_edges_80s dataset (see Graph Analysis.ipynb)
revealed the following insights. The graph consists of a
large connected component consisting of over 98% of the

MLP Coursework 1 (Simon Thorogood (s1881004))

nodes and a number of small disjoint components. The
large component was used for all clustering tasks. The
large component had a density of 0.16% and an average
clustering coefficient of 33% (a result that is significantly
lower that that reported in (Watts & Strogatz, 1998) for a
similar actor collaboration data source). The diameter of
the largest component was 14. The node degrees exhibited
a power-law-like distribution.

There are many different approaches that can be taken to
community detection in networks. For the purposes of the
project, we selected 3 non-overlapping (i.e. partitioning)
methods to compare. Each project team member focused
on one approach. The methods selected were: Girvan-
Newman (Girvan & Newman, 2002); Modularity-based
methods e.g. (Blondel et al., 2008); DBSCAN (Ester et al.,
1996).

I focused on the application of the DBSCAN algorithm.
Density-based spatial clustering of applications with noise
(DBSCAN) is a density-based clustering algorithm that first
partitions nodes into being core, border or noise nodes and
then constructs distinct clusters from the core and border
nodes. In the case of clustering in networks, DBSCAN
requires the definition of a intrinsic distance metric derived
from network topology. The distance metric selected for
use in the DSCAN algorithm was the weighted shortest path
between actor nodes where the weight was derived as the
inverse of the number of collaborations between actors. To
put it another way, the distance between 2 actors decreases
with the number of movies that they have co-starred in.

The Scikit-Learn implementation of DBSCAN (Scikit-
learn, 2018) was used in conjunction with a pre-computed
distance matrix for the nodes in the graph. Batch jobs run-
ning on DICE compute clusters were used to address the
relatively high time-complexity of some of the calculations
required. See Example - DBCSAN Clustering.ipynb for an
example of DBSCAN clustering.

In order to evaluate the performance of different cluster-
ing approaches in a recommendation context, I next de-
veloped a prototype recommendation engine that utilised
the communities identified in the previous step to make
movie recommendations. The operation of the engine can
be summarised as follows:

1. For a given input movie find the set of actors that
starred in it.

2. For each actors, attempt to identify a community that
they belong to and retrieve their closest actor neigh-
bours within the community.

3. For each related actor, find a list of movies that they
have starred in.

4. Return the list of movies as suggested recommenda-
tions.

The Example - Recommendation Engine (Cluster).ipynb
notebook provides a simple test harness for the engine.

By way of a contrast to the precomputed clustering ap-
proaches described above I also developed a prototype of
a recommendation engine based on the Personalised Page
Rank algorithm. This algorithm is based on the standard
page rank algorithm (Page et al., 1999) but takes as an input
a subset of nodes from which random walks in the graph
commence. In the context of a recommendation task, the
nodes associated with the actors that are in the input movie
are used as the starting points for the random walks and
the nodes (excluding the input nodes) with the highest re-
sulting page rank are used to find movies to recommend
(in this prototype, the top 10 highest ranked actors were
selected). This approach can be thought of conceptually
as building a personal cluster (or clusters) for the input
actors ’on the fly’. The prototype was developed using the
NetworkX pagerank implementation with equal probability
being assigned to each of the input actor nodes as a starting
point and the weights used in the previous approach also
being accounted for in the random walk edge selection. The
Example - Recommendation Engine (PPR).ipynb notebook
provides a simple test harness for the engine.

4. Results
In terms of the problem at hand, DBSCAN has some at-
tractive characteristics: It doesn’t require the number of
expected clusters to be provided in advance and it is robust
to the existence of noise in the graph (i.e. data point that do
not naturally align with any particular cluster). Conversely,
the performance of the algorithm is highly dependent of the
selection of hyper-parameters and these hyper-parameters
do not account for situations where the density is differ-
ent in different parts of the graph. The hyper-parameters
required are:

Neighbourhood Radius (ε) - this parameter determines
the maximum distance from a node that another node can
be in order to be considered a neighbour.

Minimum Samples - the number of other nodes that must
be within the neighbourhood radius in order for a node to
be considered ’core’.

A grid search was performed on these hyper-parameters in
order to ascertain the optimal values for the recommenda-
tion task. The selection of hyper-parameters was informed
by the following anticipated desirable characteristics.:

• To avoid very generic recommendations, a large num-
ber of small clusters is considered more desirable than
for example, 1 or 2 very large clusters.

• As many nodes as possible should be assigned to clus-
ters to allow recommendations to occur, though a level
of unassigned (i.e. noise) nodes is acceptable.

The graphs in Figure 1 summarise how the clustering algo-
rithm performs with different hyperparameter settings. It
can be seen that using a neighbourhood radius greater than
1 results in almost the entire graph being combined into a
single ’mega-community’. On the other hand setting the

MLP Coursework 1 (Simon Thorogood (s1881004))

neighbourhood radius too low results in too many nodes
not being classified at all. Similarly, setting the minimum
samples parameter too high results a a small number of
large clusters being identified.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Neighborhood radius ()

0

25

50

75

100

125

150

175

200

Cl
us

te
r c

ou
nt

Clusters
min_sample=3
min_sample=5
min_sample=8

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Neighborhood radius ()

0

2000

4000

6000

8000

10000

Un
as

sig
ne

d
no

de
 c

ou
nt

Unassigned (noise) nodes
min_sample=3
min_sample=5
min_sample=8

Figure 1. DBSCAN clustering performance with respect to hyper-
parameters

The optimal values for neighbourhood radius and minimum
sample were determined to be 0.75 and 3 respectively, with
around 200 distinct communities being returned. It should
be noted though that at these ’optimal’ values, around 50%
of the nodes remain unclassified and that a number of the
clusters detected were large in size (> 1000 nodes) and
therefore too generic for effective recommendation tasks
(see Figure 2).

0 500 1000 1500 2000 2500
Cluster size

100

101

102

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Figure 2. Distribution of DBSCAN cluster sizes for optimal hy-
perparameters

It can be speculated that the reason for this inability to
find a good balance between a small number of unassigned
(noise) nodes and a large number of clusters is an insuffi-

Recommendation engine DBSCAN PPR
Avg. exc. time 0.02s 8.65s
% no recommendation found 40.0% 17.6%
Avg. number of recommendations 2899.8 711.2

Table 1. Comparison of DBSCAN and PPR recommendation en-
gines. % no recommendation found is the % of samples for which
no recommendations were found. Avg. number of recommenda-
tions excludes results with no recommendations

cient degree of variance in the shortest path distance metric
used in the DBSCAN algorithm. This is despite utilising
the strength of actor collaboration to define an edge weight.

Due to time constraints it was not possible to quantita-
tively compare all the different cluster techniques devel-
oped. However, the 2 engines described in this report were
compared in terms of the number of results returned and
speed of execution for a random sample of 250 movies. See
Table 1.

Both engines can potentially return a lot of results. The
PPR engine is able to return results in more cases, which is
likely due to the large number of unclassified nodes in the
DBSCAN model. Perhaps unsurprisingly the PPR imple-
mentation is much slower to execute since it must calculate
a set of actors page ranks ’on the fly’. In a real-world
scenario though this may be acceptable since recommen-
dations likely change infrequently and could be calculated
e.g. once a day.

5. Conclusions & Future Work
Without any meaningful quantitative comparison of the
different techniques outlined here, it is hard to draw many
conclusions about the approach, however the following
areas of future research are proposed.

The number of recommendations can be large and is pro-
posed that work to rank the recommendations would be
valuable (i.e. so that the ’Top X’ results can be returned).
In the clustering case, the strength of actor relations could
be used. In the case of PPR, the page rank of the related
actors could be used.

To properly test the viability of this approach, it would
be necessary to run a multivariate test of the different ap-
proaches against a control (e.g. an existing recommendation
implementation). Success of a given implementation would
likely be measured in terms of the average user interaction
with the movies that are recommended.

Another perhaps simpler means of validation would be to
compare the recommendations form this approach with
those from e.g. a user-simlarity based approach.

References
Blondel, Vincent D., Guillaume, Jean-Loup, Lambiotte,

Renaud, and Lefebvre, Etienne. Fast unfolding of com-
munities in large networks. Journal of Statistical Me-

MLP Coursework 1 (Simon Thorogood (s1881004))

chanics: Theory and Experiment, 2008(10):P10008, oct
2008. ISSN 1742-5468. doi: 10.1088/1742-5468/2008/

10/P10008.

Ester, Martin, Ester, Martin, Kriegel, Hans-Peter, Sander,
Jörg, and Xu, Xiaowei. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with
Noise. pp. 226—-231, 1996.

Girvan, M and Newman, M E J. Community structure
in social and biological networks. Proceedings of the
National Academy of Sciences of the United States of
America, 99(12):7821–6, jun 2002. ISSN 0027-8424.
doi: 10.1073/pnas.122653799.

Haveliwala, Taher H. Topic-Sensitive PageRank. Techni-
cal report. URL http://ilpubs.stanford.edu:8090/573/1/

2002-6.pdf.

IMDb.com, Inc. Imdb dataset, 2018. URL https://www.
imdb.com/interfaces/.

Mittal, N., Nayak, R., Govil, M. C., and Jain, K. C. Recom-
mender system framework using clustering and collab-
orative filtering. In 2010 3rd International Conference
on Emerging Trends in Engineering and Technology, pp.
555–558, Nov 2010. doi: 10.1109/ICETET.2010.121.

Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Wino-
grad, Terry. The pagerank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford In-
foLab, November 1999. URL http://ilpubs.stanford.edu:
8090/422/. Previous number = SIDL-WP-1999-0120.

Pham, Manh Cuong, Cao, Yiwei, Klamma, Ralf, and Jarke,
Matthias. A Clustering Approach for Collaborative Fil-
tering Recommendation Using Social Network Analysis.
J. Ucs, 17(4):583–604, 2011. ISSN 0958695X. doi:
10.3217/jucs-017-04-0583.

Scikit-learn. Scikit-learn dbscan, 2018. URL
https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.DBSCAN.html.

Watts, Duncan J. and Strogatz, Steven H. Collective dy-
namics of ’small-world’ networks. Nature, 393(6684):
440–442, jun 1998. doi: 10.1038/30918.

http://ilpubs.stanford.edu:8090/573/1/2002-6.pdf
http://ilpubs.stanford.edu:8090/573/1/2002-6.pdf
https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

