Social and Technological Networks	Edinburgh, 2019
Notes 2.	
Rik Sarkar	Notes

Q 1. Programming: Take a set of n nodes, where you choose n. Now create the plot for ER graphs where p is along x axis, and the probability of there being an isolated vertex is along y axis. Think carefully about what you need to do to get the "probability", and what value of n is reasonable. (You are not expected have a rigorous answer for this, but a very small n will not give reliable results, but a large n will make the program slow.)

Q 2. Show that a connected graph has $\Omega(n)$ triads (counting both open and closed).

In class we saw that a triangle or closed triad is is three vertices a, b, c with all edges ab, bc, ca between them. The number of possible triangles or triads is clearly $\binom{n}{3}$, which is $\Theta(n^3)$. The probability that a particular triangle exists is p^3 .

Q 3. What is the expected number of triangles or closed triads in the graph?

Q 4. Clustering coefficient is the ratio of number of closed triads to number of all triads. Show that for ER graphs with $p = \frac{\ln n}{n}$ (where *n* is an unknown variable) the clustering coefficient cannot be bounded from below buy a constant. (That is, there is no constant number such that CC is always greater than that.)