Notes 2 - Solutions

PRoblem 2:

Show that a connected graph has $\Omega(n)$ triads (counting both open and closed)

The above statement would be true if there was a constant $k>0$ such that the number of triads $f(n)$ is always greater than $k f(n)$.

It is obviously true in the simple case of a graph with 3 nodes and a single open triad. In this case there is 1 triad and $k=\frac{1}{2}$ will work.

When we have a problem where we are trying to establish the number of something in general, and can see that it is true in a simple case, induction is often the way forward.

Proof by Induction

Base Case:

Let $\mathrm{n}=3$ so that we have the minimum number of vertices required to form a graph with a triad. Let the graph have one open triad, so that it is minimally connected while still allowing triads.

Let $k=\frac{1}{2}$. Clearly, $f(3)=1$. Therefore it is true in this case that:

$$
f(3) \geq k * f(3)
$$

as:

$$
1 \geq \frac{1}{2}
$$

Inductive Step:
We need to show that if the number of triads is $\Omega(n)$ for $n=j$, then it is also true for $n=j+1$.

Say we have a graph with j vertices and $f(j)$ triads such that $f(j) \geq \frac{1}{2} j$.
If we add a vertex then given that this is a connected graph there will necessarily be an edge connecting this vertex to the existing graph. Say the new vertex x is connected to vertex y which was included in the original j vertexes. The number of triads can only increase as y will be connected to at least one other vertex z in the graph by the connectivity of the graph.

This implies that at least one new triad will be added.
Therefore $f(j+1) \geq f(j)+1$.
We also know that $f(j) \geq \frac{1}{2} j$ and clearly $\frac{1}{2} j+1 \geq \frac{1}{2} j+\frac{1}{2}$.
Combining these:

$$
f(j+1) \geq \frac{1}{2}(j+1)
$$

Note that if an edge was added instead of a vertex the number of triads could only increase, and so the same argument holds.

Therefore, for all $n \geq 3$ the number of triads is $\Omega(n)$ as there exists a value of k such that $f(n) \geq k f(n)$.

PRoblem 3:

What is the expected number of triangles or closed triads in the graph.

Say there is a probability p of any two nodes being connected.
There are $\binom{n}{3}$ possible triangles. The probability of any given triangle is then p^{3}.
This implies that the expected number of triangles is $p^{3}\binom{n}{3}$

Problem 4:

Clustering coefficient is the ratio of number of closed triads to number of all triads. Show that for ER graphs with $p=\frac{\ln (n)}{n}$ (where n is an unknown variable) the clustering coefficient cannot be bounded from below buy a constant. (That is, there is no constant number such that CC is always greater than that.

As seen above, the expected number of closed triads is $p^{3}\binom{n}{3}$.
With $p=\frac{\ln (n)}{n}$ this gives an expected value of $\frac{\binom{n}{3}}{n^{3}} \ln ^{3}(n)$.
As $\binom{n}{3}$ is $O\left(n^{3}\right)$, this implies that the expected number of closed triads is $O\left(\ln ^{3}(n)\right)$
In problem 1 we showed that a connected graph has $\Omega(n)$ triads.
Therefore the ratio is $\frac{O\left(\ln ^{3}(n)\right)}{\Omega(n)}$.
Regardless of which clustering coefficient we chose, we could always then choose a value of n which was large enough to make $\frac{O\left(\ln ^{3}(n)\right)}{\Omega(n)}$ smaller than this constant as this ratio approaches 0 for large enough n. Thus, for these graphs, there is no constant that act as a lower bound for CC.

