
Social and Technological Networks Edinburgh, 2019

Notes 1.
Rik Sarkar Notes

Optimizations. In class we discussed optimization problems and approximations. For a given
function f(·), a maximization problem is to find the input x to f that achieves the maximum possi-
ble f(x). Similarly, a minimization problems about finding the input to minimize f .

For the influence maximization problem, the input x too the form of subsets of V . This creates a
computational challenge, since there are many possible subsets of V . We were looking for subsets
of size k, but even then, there are

(
n
k

)
possibilities, which is can be very large for a large k.

Q 1. Suppose k = n/2. Show that the number of possible subsets of size k is at least 2Ω(n).

Approximations. For a maximization problem, if f achieves its maximum value for input x∗ and
f(x∗) = OPT , then a c-approximation algorithm finds an x such that f(x) ≥ c · OPT . The value
for c in this case will be a positive fraction less than 1.

For a minimization problem, if f achieves its minimum value for input x∗ and f(x∗) = OPT , then
a c-approximation algorithm finds an x such that f(x) ≤ c · OPT . The value of c will be greater
than 1.

In both cases, c is called the approximation factor.

Q 2. What is the range of possible values for the approximation factor of an approximation algo-
rithm for the influence maximization problem?

Q 3. Suppose we want to find shortest paths. Is this is a maximization or minimization problem?
What is the range of possible values for the approximation factor of an approximation algorithm
for this problem?

Two very useful inequalities: (
1 +

1

x

)x

≤ e(
1− 1

x

)x

≤ 1

e

We will make use of these many times in the course.

Q 4. Suppose a tortoise is at distance n meters from its destination. It is getting tired with time,
and in each hour, it covers 1/2 of the remaining distance to the destination. How long does it take
the tortoise to get to the destination?

1

Q 5. How long does it take it to get to within 1 meter of the destination?

Q 6. Now suppose instead the tortoise covers 1/k of the remaining distance to the destination in
each hour. How long does it take it to get to within 1 meter?

Q 7. If the tortoise covers 1/k of the remaining distance to the destination in each hour, what
fraction of the distance remains to be covered after 1 hr? What fraction remains to be covered after
k hours?

Q 8. In the independent activation model, suppose node u has neighbors v1, v2, . . . and the corre-
sponding edges have associated probabilities p1, p2, Suppose the probability of u being acti-
vated is p(u). If all neighbors v1, v2, . . . are active, can we say that p(u) ≤ p1 + p2 + . . . ? What is
the exact probability of u becoming active?

Q 9. Suppose for a node x in a network, an edge to each other n− 1 nodes exists with probability
lnn
n−1 . Show that the probability that x has no edge is ≤ 1

n [hint: use (1− 1
x)

x with x = lnn
n−1 .]

Problem instances An instance of a problem is the problem asked for a particular dataset. For
example, finding shortest path is an algorithmic problem, while finding the shortest path between
a specific pari of nodes on a particular network is an instance of the shortest path problem.

NP hardness. (optional. not in exam). There are certain problems that are considered NP-hard,
and belong to the class of problems called NP-hard. Let us refer to this set as NPH .

It can be shown that for any pair of problems A,B ∈ NPH , any given instance of A can be
“reduced” to an instance of B in polynomial time. Meaning that given an instance of A, we can
convert it to an instance of B in polynomial time, and then any solution of the instance of B can
be converted back to a solution of the instance of A in polynomial time.

This also implies that if there is a polynomial time solution to B, then that can be used to get a
polynomial time solution of A via the reduction. Thus, if any problem in NPH has a polynomial
time solution, then every problem in NPH will have a polynomial time solution via the reduction.
It is however generally believed that NP-hard problems cannot have polynomial time solutions.
Though a proof of this fact is not known.

When we encounter a new problem C, the usual way to show that it is NP-hard is to take a known
problem B ∈ NPH and show that a polynomial time reduction exists from B to C. This implies
that C is NP hard, and a polynomial time algorithm is unlikely. If a poly time algorithm is found
for C, that would imply that all problems in NPH has poly time algorithms. Thus, once we have
shown a problem to be NP-hard, finding ploy time algorithms for it is really unlikely.

2

