Notes 1.

Rik Sarkar

Optimizations. In class we discussed optimization problems and approximations. For a given function $f(\cdot)$, a maximization problem is to find the input x to f that achieves the maximum possible $f(x)$. Similarly, a minimization problems about finding the input to minimize f.

For the influence maximization problem, the input x too the form of subsets of V. This creates a computational challenge, since there are many possible subsets of V. We were looking for subsets of size k, but even then, there are $\binom{n}{k}$ possibilities, which is can be very large for a large k.

Q 1. Suppose $k=n / 2$. Show that the number of possible subsets of size k is at least $2^{\Omega(n)}$.

Approximations. For a maximization problem, if f achieves its maximum value for input x^{*} and $f\left(x^{*}\right)=O P T$, then a c-approximation algorithm finds an x such that $f(x) \geq c \cdot O P T$. The value for c in this case will be a positive fraction less than 1.
For a minimization problem, if f achieves its minimum value for input x^{*} and $f\left(x^{*}\right)=O P T$, then a c-approximation algorithm finds an x such that $f(x) \leq c \cdot O P T$. The value of c will be greater than 1.

In both cases, c is called the approximation factor.
Q 2. What is the range of possible values for the approximation factor of an approximation algorithm for the influence maximization problem?

Q 3. Suppose we want to find shortest paths. Is this is a maximization or minimization problem? What is the range of possible values for the approximation factor of an approximation algorithm for this problem?

Two very useful inequalities:

$$
\begin{aligned}
& \left(1+\frac{1}{x}\right)^{x} \leq e \\
& \left(1-\frac{1}{x}\right)^{x} \leq \frac{1}{e}
\end{aligned}
$$

We will make use of these many times in the course.
Q 4. Suppose a tortoise is at distance n meters from its destination. It is getting tired with time, and in each hour, it covers $1 / 2$ of the remaining distance to the destination. How long does it take the tortoise to get to the destination?

Q 5. How long does it take it to get to within 1 meter of the destination?

Q 6. Now suppose instead the tortoise covers $1 / k$ of the remaining distance to the destination in each hour. How long does it take it to get to within 1 meter?

Q 7. If the tortoise covers $1 / k$ of the remaining distance to the destination in each hour, what fraction of the distance remains to be covered after 1 hr ? What fraction remains to be covered after k hours?

Q 8. In the independent activation model, suppose node u has neighbors v_{1}, v_{2}, \ldots and the corresponding edges have associated probabilities p_{1}, p_{2}, \ldots. Suppose the probability of u being activated is $p(u)$. If all neighbors v_{1}, v_{2}, \ldots are active, can we say that $p(u) \leq p_{1}+p_{2}+\ldots$? What is the exact probability of u becoming active?

Q 9. Suppose for a node x in a network, an edge to each other $n-1$ nodes exists with probability $\frac{\ln n}{n-1}$. Show that the probability that x has no edge is $\leq \frac{1}{n}$ [hint: use $\left(1-\frac{1}{x}\right)^{x}$ with $x=\frac{\ln n}{n-1}$.]

Problem instances An instance of a problem is the problem asked for a particular dataset. For example, finding shortest path is an algorithmic problem, while finding the shortest path between a specific pari of nodes on a particular network is an instance of the shortest path problem.

NP hardness. (optional. not in exam). There are certain problems that are considered NP-hard, and belong to the class of problems called NP-hard. Let us refer to this set as NPH.

It can be shown that for any pair of problems $A, B \in N P H$, any given instance of A can be "reduced" to an instance of B in polynomial time. Meaning that given an instance of A, we can convert it to an instance of B in polynomial time, and then any solution of the instance of B can be converted back to a solution of the instance of A in polynomial time.
This also implies that if there is a polynomial time solution to B, then that can be used to get a polynomial time solution of A via the reduction. Thus, if any problem in $N P H$ has a polynomial time solution, then every problem in NPH will have a polynomial time solution via the reduction. It is however generally believed that NP-hard problems cannot have polynomial time solutions. Though a proof of this fact is not known.

When we encounter a new problem C, the usual way to show that it is NP-hard is to take a known problem $B \in N P H$ and show that a polynomial time reduction exists from B to C. This implies that C is NP hard, and a polynomial time algorithm is unlikely. If a poly time algorithm is found for C, that would imply that all problems in $N P H$ has poly time algorithms. Thus, once we have shown a problem to be NP-hard, finding ploy time algorithms for it is really unlikely.

