Notes 1 - Solutions

Problem 1:
Suppose $k = n/2$. Show that the number of possible subsets of size k is at least $2^{\Omega(n)}$.

Divide V at random into two disjoint subsets $X, Y \subset V$ of size $\frac{n}{2}$.

Label the elements of these sets $\{x_1, ..., x_{\frac{n}{2}}\}$ and $\{y_1, ..., y_{\frac{n}{2}}\}$ respectively so that each element $x_i \in X$ has a natural pair $y_i \in Y$ for $i = \{1, ..., \frac{n}{2}\}$.

In order to form a subset $S \subseteq V$ of size $\frac{n}{2}$ choose exactly one of x_i or y_i for all $i = \{1, ..., \frac{n}{2}\}$.

There are therefore 2 choices for each element of S, implying that there are $2^{\frac{n}{2}}$ possible subsets of V of size $\frac{n}{2}$ formed in this way.

This implies that there are at least $2^{\Omega(n)}$ possible subsets of size $\frac{n}{2}$.

Problem 2:
What is the range of possible values for the approximation factor of an approximation algorithm for the influence maximization problem.

This is a maximization problem, therefore, approximation factor $C \leq 1$. Additionally, in case of an algorithm that outputs k unique nodes, $k \leq f(x) \leq OPT$ and $\frac{k}{OPT} \leq C \leq 1$.

Problem 3:
Suppose we want to find shortest paths. Is this a maximization or minimization problem? What is the range of possible values for the approximation factor of an approximation algorithm for this problem.

This is a minimization problem, we wish to find a set x of edges such that the source and destination nodes are connected by these edges, but the size of this set is minimal. The approximation factor C will satisfy $C \geq 1$.

If we want to be more technical, we can observe that a “path” cannot have repeated edges. Thus in an unweighted graph, the output of the algorithm has at most E edges, and C is bounded by $1 \leq C \leq \frac{E}{OPT}$.

Problem 4:
Suppose a tortoise is at distance n meters from its destination. It is getting tired with time, and in each hour, it covers $\frac{1}{2}$ of the remaining distance to the destination. How long does it take the tortoise to get to the destination.

At time step 0 the tortoise has a distance n left to travel. At the next time step a distance of $\frac{n}{2}$ left to travel, and so on.

Therefore the sequence representing the distance remaining is given by $\{n, \frac{n}{2}, \frac{n}{4}, ..., \frac{n}{2^t}\}$ where t represents the time step in hours. At any time step this value will be a fraction with a value greater than 0, therefore the time to the destination is infinite.
Problem 5:
How long does it take it to get to within 1 meter of the destination?

This occurs when \(\frac{n}{2^t} < 1 \) therefore \(t > \log_2(n) \).

Problem 6:
Now suppose instead the tortoise covers \(\frac{1}{k} \) of the remaining distance to the destination in each hour. How long does it take it to get to within 1 meter?

In this case the sequence of distances remaining can be represented by:

\[
\{n, \frac{(k-1)n}{k}, \ldots, \frac{(k-1)^tn}{k^t}\}
\]

Therefore the distance is within 1 meter when \(\frac{(k-1)^tn}{k^t} < 1 \).

Solving for \(t \) we obtain \(t > \frac{\log(n)}{1 - \log_k(k-1)} \).

Problem 7:
If the tortoise covers \(\frac{1}{k} \) of the remaining distance to the destination in each hour, what fraction of the distance remains to be covered after 1 hr? What fraction remains to be covered after \(k \) hours?

After 1 hour the tortoise has \(\frac{(k-1)n}{k} \) meters left to cover. Therefore the fraction of distance left to cover is

\[
\frac{(k-1)n}{k} = (k-1)
\]

After \(k \) hours the tortoise has \(\frac{(k-1)^kn}{k^k} \) meters left to cover, so the fraction of the distance left to cover is

\[
\left(1 - \frac{1}{k}\right)^k \leq \frac{1}{e}.
\]

Problem 8:
In the independent activation model, suppose node \(u \) has neighbors \(v_1, v_2, \ldots \) and the corresponding edges have associated probabilities \(p_1, p_2, \ldots \). Suppose the probability of \(u \) being activated is \(p(u) \). If all neighbors \(v_1, v_2, \ldots \) are active, can we say that \(p(u) \leq p_1 + p_2 + \ldots \)? What is the exact probability of \(u \) becoming active?

In order for a node to become active, it must be activated by at least one of its neighbors. Therefore it is activated if it is activated by neighbour \(v_1 \) or neighbour \(v_2 \) and so on. We are in the independent activation model therefore \(P(u) \) is given by (by union bound):

\[
P(\text{activated by } v_1 \text{ OR activated by } v_2 \text{ OR } \ldots) = P(\text{activated by } v_1) + P(\text{activated by } v_2) + \ldots
\]
\[
= p_1 + p_2 + \ldots
\]
To compute the exact probability, we observe that the probability that \(u \) is not activated by \(v_i \) is \(1 - p_i \). Thus the probability that \(u \) is not activated by any of the neighbors is \((1 - p_1)(1 - p_2)\ldots\). Thus the probability that \(u \) is activated by at least one neighbor is: \(1 - \prod_i (1 - p_i) \).

Problem 9:

Suppose for a node \(x \) in a network, an edge to each other \(n - 1 \) nodes exists with probability \(\frac{\ln(n)}{n-1} \). Show that the probability that \(x \) has no edge is \(\leq \frac{1}{n} \) [hint: use \((1 - \frac{1}{x})^x\) with \(x = \frac{\ln(n)}{n-1} \)].

For each of the \(n - 1 \) other nodes in the network, the probability that node \(x \) is not connected to it is \(1 - \frac{\ln(n)}{n-1} \). Assuming that the probability of node \(x \) being connected to any other nodes is independent of the other nodes it is connected to, then:

\[
P(x \text{ is connected to no other node}) = \left(1 - \frac{\ln(n)}{n-1}\right)^{n-1}
\]

Let \(z = \frac{n-1}{\ln(n)} \), then:

\[
P(x \text{ is connected to no other node}) = \left[\left(1 - \frac{1}{z}\right)^z\right]^{\frac{1}{\ln(n)}}
\]

\[
\leq \left(\frac{1}{e}\right)^{\frac{1}{\ln(n)}} = \frac{1}{e^{\ln(n)}} = \frac{1}{n}
\]