Notes 1 - Solutions

PROBLEM 1:

Suppose $k=n / 2$. Show that the number of possible subsets of size k is at least $2^{\Omega(n)}$.

Divide V at random into two disjoint subsets $X, Y \subset V$ of size $\frac{n}{2}$.
Label the elements of these sets $\left\{x_{1}, \ldots x_{\frac{n}{2}}\right\}$ and $\left\{y_{1}, \ldots y_{\frac{n}{2}}\right\}$ respectively so that each element $x_{i} \in X$ has a natural pair $y_{i} \in Y$ for $i=\left\{1, \ldots, \frac{n}{2}\right\}$.
In order to form a subset $S \subseteq V$ of size $\frac{n}{2}$ choose exactly one of x_{i} or y_{i} for all $i=\left\{1, \ldots, \frac{n}{2}\right\}$.
There are therefore 2 choices for each element of S, implying that there are $2^{\frac{n}{2}}$ possible subsets of V of size $\frac{n}{2}$ formed in this way.

This implies that there are at least $2^{\Omega(n)}$ possible subsets of size $\frac{n}{2}$
PROBLEM 2:
What is the range of possible values for the approximation factor of an approximation algorithm for the influence maximization problem

This is a maximization problem, therefore, approximation factor $C \leq 1$. Additionally, in case of an algorithm that outputs k unique nodes, $k \leq f(x) \leq O P T$ and $\frac{k}{O P T} \leq C \leq 1$.

PRoblem 3:
Suppose we want to find shortest paths. Is this is a maximization or minimization problem? What is the range of possible values for the approximation factor of an approximation algorithm for this problem

This is a minimization problem, we wish to find a set x of edges such that the source and destination nodes are connected by these edges, but the size of this set is minimal. The approximation factor C will satisfy $C \geq 1$.

If we want to be more technical, we can observe that a "path" cannot have repeated edges. Thus in an unweighted graph, the output of the algorithm has at most E edges, and C is bounded by $1 \leq C \leq \frac{E}{O P T}$.

PROBLEM 4:
Suppose a tortoise is at distance n meters from its destination. It is getting tired with time, and in each hour, it covers $\frac{1}{2}$ of the remaining distance to the destination. How long does it take the tortoise to get to the destination

At time step 0 the tortoise has a distance n left to travel. At the next time step a distance of $\frac{n}{2}$ left to travel, and so on.

Therefore the sequence representing the distance remaining is given by $\left\{n, \frac{n}{2}, \frac{n}{4}, \ldots \frac{n}{2^{t}}\right\}$ where t represents the time step in hours. At any time step this value will be a fraction with a value greater than 0 , therefore the time to the destination is infinite.

PROBLEM 5:

How long does it take it to get to within 1 meter of the destination?

This occurs when $\frac{n}{2^{t}}<1$ therefore $t>\log _{2}(n)$.

PROBLEM 6:

Now suppose instead the tortoise covers $\frac{1}{k}$ of the remaining distance to the destination in each hour. How long does it take it to get to within 1 meter?

In this case the sequence of distances remaining can be represented by:

$$
\begin{equation*}
\left\{n, \frac{(k-1) n}{k}, \ldots, \frac{(k-1)^{t} n}{k^{t}}\right\} \tag{1}
\end{equation*}
$$

Therefore the distance is within 1 meter when $\frac{(k-1)^{t} n}{k^{t}}<1$.
Solving for t we obtain $t>\frac{\log _{k}(n)}{1-\log _{k}(k-1)}$

PROBLEM 7:

If the tortoise covers $\frac{1}{k}$ of the remaining distance to the destination in each hour, what fraction of the distance remains to be covered after 1 hr ? What fraction remains to be covered after k hours?

After 1 hour the tortoise has $\frac{(k-1) n}{k}$ meters left to cover. Therefore the fraction of distance left to cover is $\frac{\frac{(k-1) n}{k}}{n}=\frac{(k-1)}{k}$

After k hours the tortoise has $\frac{(k-1)^{k} n}{k^{k}}$ meters left to cover, so the fraction of the distance left to cover is $\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e}$.

PROBLEM 8:
In the independent activation model, suppose node u has neighbors v_{1}, v_{2}, \ldots and the corresponding edges have associated probabilities p_{1}, p_{2}, \ldots. Suppose the probability of u being activated is $p(u)$. If all neighbors v_{1}, v_{2}, \ldots are active, can we say that $p(u) \leq p_{1}+p_{2}+\ldots$? What is the exact probability of u becoming active?

In order for a node to become active, it must be activated by at least one of its neighbors. Therefore it is activated if it is activated by neighbour v_{1} or neighbour v_{2} and so on... We are in the independent activation model therefore $P(u)$ is given by (by union bound):

$$
\begin{aligned}
P\left(\text { activated by } v_{1} \text { OR activated by } v_{2} \text { OR } \ldots\right) & =P\left(\text { activated by } v_{1}\right)+P\left(\text { activated by } v_{2}\right)+\ldots \\
& =p_{1}+p_{2}+\ldots
\end{aligned}
$$

To compute the exact probability, we observe that the probability that u is not activated by v_{i} is $1-p_{i}$. Thus the probability that u is not activate by any of the neighbors is $\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots$. Thus the probability that u is activated by at least one neighbor is: $1-\Pi_{i}\left(1-p_{i}\right)$.

Problem 9:
Suppose for a node x in a network, an edge to each other $n-1$ nodes exists with probability $\frac{\ln (n)}{n-1}$. Show that the probability that x has no edge is $\leq \frac{1}{n}$ [hint: use $\left(1-\frac{1}{x}\right)^{x}$ with $x=\frac{\ln (n)}{n-1}$.]

For each of the $n-1$ other nodes in the network, the probability that node x is not connected to it is $1-\frac{\ln (n)}{n-1}$. Assuming that the probability of node x being connected to any other nodes is independent of the other nodes it is connected to, then:

$$
P(x \text { is connected to no other node })=\left(1-\frac{\ln (n)}{n-1}\right)^{n-1}
$$

Let $z=\frac{n-1}{\ln (n)}$, then:

$$
\begin{aligned}
P(x \text { is connected to no other node }) & =\left[\left(1-\frac{1}{z}\right)^{z}\right]^{\frac{1}{\ln (n)}} \\
& \leq\left(\frac{1}{e}\right)^{\frac{1}{\ln (n)}} \\
& =\frac{1}{e^{\ln (n)}} \\
& =\frac{1}{n}
\end{aligned}
$$

