Tie strength, social capital, betweenness and homophily

Rik Sarkar

Social and technological networks
Edinburgh 2018

Networks

- Position of a node in a network determines its role/importance
- Structure of a network determines its properties

Today

- Notion of strong ties (close friends) and weak ties (remote acquaintances)
- How they influence the network and spread of information
- Friendships and their evolution
- "Central" locations
- Several small, but related concepts
- [Reference for most: Kleinberg-Easley, Chapter 3,4]
- Also see end of chapter exercises

Strong and weak ties

- Survey of job seekers show people often find jobs through social contacts
- More important: people more often find jobs through acquaintances (weak ties) than close friends (strong ties)
- Strength of weak ties. Mark S. Granovetter, American journal of Sociology, 1973

Strong and weak ties

- Explanation:
- A close friend is likely in the same community and has the same information sources
- Person in a different community is more likely to have "new" information, that you do not already know
- Weak ties are more critical: they can act as bridges across communities
- Other observation: Job information does not travel far - long paths are not involved

Weak ties in social action

- Psychology: People do not often act on global information (radio, tv) etc
- People are more likely to act when confirmed by friends (creates trust)
- Therefore, people are more likely trust a leader when confirmed by direct familiarity or common friends acting as intermediaries
- A society without bridges is fragmented
- The leader does not reach a large number of people that trust him

Weak ties in social action

- Example (from Granovetter): A small town needs to coordinate action on a social issues
- If everyone works at different places in nearby industries
- Then people only know their families. There are no workacquaintances, etc.
- Organizing a protest is hard
- If everyone works at the same large industry
- Likely there are work-acquaintances (weak ties)
- Social action works better
- See also:
- Ted talk: Online social change: Easy to organize, hard to win (can you model and explain this?)

Triadic closure: Friends of Friends

- If two people have a friend in common, they are more likely to become friends
- Triadic closure
- If B \& C both know A
- They are likely to meet, may be for extended time
- Likely to trust each-other

Triadic closure in affiliation networks

(i) Bob introduces Anna to Claire.
(ii) Karate introduces Anna to Daniel.
(iii) Anna introduces Bob to Karate.

Homophily

- We are similar to our friends
- Not always explained by things intrinsic to the network like simple triadic closure
- External contexts like Culture, hobbies, interests influence networks
- Suppose the network has 2 types of nodes (eg. Male, female), fractions p and q
- Expected fraction of cross-gender edges: $2 p q$
- A test for homophily:
- Fraction of cross gender edges < 2pq

Homophily: The obesity epidemic

- Christakis and fowler (See ted talk: hidden influence of social networks)
- Is it that:
- People are selecting similar people?
- Other correlated hommophilic factors (existing food/cultural habits...) affecting data?
- Are obese friends influencing the habits causing more people to be obese?
- Authors argue that tracking data over a period of time shows significant evidence of the influence hypothesis
- It is an epidemic

Social foci: affiliation networks

Triadic Closures

- From student email dataset

Focal closure

- Classes as foci

Membership closure

Probability of joining a community when k friends are already members

Bridges

- Bridge: Removing a bridge will disconnect network
- Rare in real networks
- Local bridge (A, B): If A, B have no friends in common
- Deleting (A, B) will increase distance to d >2

$-d$ Is called the span of the bridge (A, B)

Strong triadic closure

- Suppose we know some ties to be strong, some to be weak
- For some definition of strong/ weak
- Strong triadic closure: If ab and bc are strong, then edge ac exists (may be weak, but it
 is there)

Strong triadic closure

- Theorem: if a network satisfies strong triadic closure and node A has ≥ 2 strong ties then any bridge involving A must be a weak tie.
- Proof: Easy!
- In real world, triadic closure is reasonably important

- Many examples
- People want their friends to be friends (otherwise it is hard to have groups)
- Absence of triadic closure implies poor relation between friends, stress etc

An experiment: Cell phone social net

- Network from phone conversations
- 18 weeks of all mobile calls for $\sim 20 \%$ of US population, 90% had a mobile phone
- link: at least 1 reciprocating call.
- tie strength : aggregated duration of calls
- Onella et al. Structure and tie strengths in mobile communication networks. PNAS 2007

Observations

- Most people talk to few others, few talk to many people
- Power law-like distribution
- "Hubs" are relatively rare
- Strong ties are within clusters

- Onella et al. Structure and tie strengths in mobile communication networks. PNAS 2007

Possible network structures

- Efficiency: Inter-cluster ties are strong
- Eg. Highways, Internet routers, water distribution, etc, to allow large flows (C)
- Dyadic: tie strength depends on individual relationship only
- Simulated as random(B)
- Strength of weak ties (A)
- Opposite of c
- Argument: Social Information does not have a conservation requirement like transport or water

Other observations

- When strong ties are removed, network degrades slowly, but remains largely connected
- When the weak ties are removed, the network quickly and suddenly (phase transition) falls apart. i.e disconnects into chunks
- Experiment: Spread a rumor in this network. Anyone having the rumor is likely to transmit probabilistically: ie. More likely in a longer conversation
- Observation: In majority of cases, people learn of it through ties of intermediate strength.

Neighborhood based estimate tie strength

- When we do not have a real observation for tie strength
- $N_{r}(p)$: neighborhood of r hops centered at p. Sometimes written as $B_{r}(p)$
$-N(p)=N_{1}(p)$
- Neighborhood overlap of ab:

$$
\frac{|N(a) \cap N(b)|}{|N(a) \cup N(b)|}
$$

- A more continuous notion of strength
- And derived from the network
- Potential experiment : compare with other definitions of strengths
- Zero (or small, depending on definition of N) when $a b$ is a local bridge

Neighborhood overlap Vs phone call duration

Embeddedness of an edge

- The number of common friends
- Higher embeddedness implies more people monitoring the relation
$-B$ does not want to cheat A since E will no longer trust B
- But B can sacrifice relation with C without losing any direct friend
- What is the embeddedness of a bridge?

Structural holes

- B is part of a bridge that spans a gap/hole in the network (called structural holes)
- B has early access to information from other parts of network
- Interesting ideas occur as synthesis of multiple topics
- B has control over what the group learns from c and d
- B has reason to not allow triangles to form
- On the other hand, B's relations are not so protected by embeddedness
- How people actually behave in such situations is not well understood
- Tension between closure and brokerage

Social capital

- The ability to secure benefits by virtue of membership (and position) in social networks or other social structures
- Sometimes used as a property of a group

Betweenness centrality

- Bridges are "central" to the network
- They lie on shortest paths
- Betweenness of edge (e) (or vertex (v)):
- We send 1 unit of traffic between every pair of nodes in the network, and measure what fraction passes through e , assuming the flow is split equally among all shortest paths.

Other Centrality measures

- Degree centrality - nodes with high degree
- Pagerank
- Eigen vector centrality (similar to pagerank, but undirected graphs)
- Closeness centrality
- Average distance to all other nodes $\left.\quad \ell_{x}=\frac{1}{n} \sum_{y} d(x, y)\right)$ Decreases with centrality
- Inverse is an increasing measure of centrality

$$
C_{x}=\frac{1}{\ell_{x}}=\frac{n}{\sum d(x, y)}
$$

k-core of a graph G

- A maximal connected subgraph where each vertex has a degree at least k
- Inside that subgraph.
- Obtained by repeatedly deleting vertices of degree less than k

