Spectral analysis of ranking algorithms

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.
Recap: HITS algorithm

• Evaluate hub and authority scores
• Apply Authority update to all nodes:
 – auth(p) = sum of all hub(q) where q -> p is a link
• Apply Hub update to all nodes:
 – hub(p) = sum of all auth(r) where p->r is a link
• Repeat for k rounds
Adjacency matrix

• Example

```
\begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
```
Hubs and authority scores

• Can be written as vectors h and a

• The dimension (number of elements) of the vectors are n
Update rules

- Are matrix multiplications

\[h \leftarrow M a \]
• Hub rule for i: sum of a-values of nodes that i points to:

$$h \leftarrow Ma$$

• Authority rule for i: sum of h-values of nodes that point to i:

$$a \leftarrow M^T h$$
Iterations

• After one round:

\[a^{(1)} = M^T h^{(0)} \]

\[h^{(1)} = M a^{(1)} = M M^T h^{(0)} \]

• Over \(k \) rounds:

\[h^{(k)} = (M M^T)^k h^{(0)} \]
Convergence

• Remember that h keeps increasing
• We want to show that the normalized value
 \[\frac{h^{(k)}}{c^k} \]
 converges to a vector of finite real numbers as k goes to infinity
• If convergence happens, then there is a c:
 \[(MM^T)h^{(*)} = ch^{(*)} \]
Eigen values and vectors

\[(M M^T) h^{(*)} = c h^{(*)}\]

• Implies that for matrix \((M M^T)\)
• \(c\) is an eigen value, with
• \(h^{(*)}\) as the corresponding eigen vector
Proof of convergence to eigen vectors

• Useful Theorem: A symmetric matrix has orthogonal eigen vectors.
 – They form a basis of n-D space
 – Any vector can be written as a linear combination
• \((MM^T)\) is symmetric
• For matrix P with all positive values, Perron’s theorem says:
 – A unique positive real valued largest eigen value c exists
 – Corresponding eigen vector y is unique and has positive real coordinates
 – If $c=1$, then $P^k x$ converges to y
Now to prove convergence:

- Suppose sorted eigen values are:
 \[|c_1| \geq |c_2| \geq \cdots \geq |c_n| \]

- Corresponding eigen vectors are:
 \[z_1, z_2, \ldots, z_n, \]

- We can write any vector \(x \) as
 \[
 x = p_1 z_1 + p_2 z_2 + \cdots + p_n z_n
 \]

- So:
 \[
 (MM^T)x = (MM^T)(p_1 z_1 + p_2 z_2 + \cdots + p_n z_n)
 = p_1 MM^T z_1 + p_2 MM^T z_2 + \cdots + p_n MM^T z_n
 = p_1 c_1 z_1 + p_2 c_2 z_2 + \cdots + p_n c_n z_n,
 \]
\[(MM^T)x = (MM^T)(p_1 z_1 + p_2 z_2 + \cdots + p_n z_n)\]
\[= p_1 MM^T z_1 + p_2 MM^T z_2 + \cdots + p_n MM^T z_n\]
\[= p_1 c_1 z_1 + p_2 c_2 z_2 + \cdots + p_n c_n z_n,\]

- After \(k\) iterations:
 \[(MM^T)^k x = c_1^k p_1 z_1 + c_2^k p_2 z_2 + \cdots + c_n^k p_n z_n\]

- For hubs:
 \[h^{(k)} = (MM^T)^k h^{(0)} = c_1^k q_1 z_1 + c_2^k q_2 z_2 + \cdots + c_n^k q_n z_n\]

- So:
 \[\frac{h^{(k)}}{c_1^k} = q_1 z_1 + \left(\frac{c_2}{c_1}\right)^k q_2 z_2 + \cdots + \left(\frac{c_n}{c_1}\right)^k q_n z_n\]

- If \(|c_1| > |c_2|\), only the first term remains.

- So, \[\frac{h^{(k)}}{c_1^k}\] converges to \(q_1 z_1\)
Properties

• The vector \(q_1 z_1 \) is a simple multiple of \(z_1 \)
 – A vector essentially similar to the first eigen vector
 – Therefore independent of starting values of \(h \)

• \(q_1 \) can be shown to be non-zero always, so the scores are not zero

• Authority score analysis is analogous
Pagerank Update rule as a matrix derived from adjacency

\[r \leftarrow N^T r \]
• Scaled pagerank:
 \[r \leftarrow \tilde{N}^T r \]

• Over k iterations:
 \[r^{(k)} = (\tilde{N}^T)^k r^{(0)} \]

• Pagerank does not need normalization.
 \[\tilde{N}^T r^{(*)} = r^{(*)} \]

• We are looking for an eigen vector with eigen value=1
Random walks

• A random walker is moving along random directed edges
• Suppose vector b shows the probabilities of walker currently being at different nodes
• Then vector $N^T b$ gives the probabilities for the next step
Random walks

• Thus, pagerank values of nodes after k iterations is equivalent to:
 – The probabilities of the walker being at the nodes after k steps

• The final values given by the eigen vector are the steady state probabilities
 – Note that these depend only on the network and are independent of the starting points
History of web search

• YAHOO: A directory (hierarchic list) of websites
 – Jerry Yang, David Filo, Stanford 1995

• 1998: Authoritative sources in hyperlinked environment (HITS), symposium on discrete algorithms
 – Jon Kleinberg, Cornell

• 1998: Pagerank citation ranking: Bringing order to the web
 – Larry Page, Sergey Brin, Rajeev Motwani, Terry Winograd, Stanford techreport