#### Small world networks

Social and Technological Networks

**Rik Sarkar** 

University of Edinburgh, 2018.

# Milgram's experiment

- Take people from random locations in USA
- Ask them to deliver a letter to a random person in Massachusetts
- A person can only forward the letter to someone you know
- Question: How many hops do the letters take to get to destination?

# Results

- Out of 296 letters, only 64 completed
- Number of hops varied between 2 and 10
- Mean number of hops 6
- There were a few people that were the last hop in most cases

#### **Discussion of experiment**

### Discussion of experiment

- Short paths exist between pairs (small diameter)
- More surprisingly, people find these short paths
- Without knowing the entire network
- Decentralized search
- Analogous to routing without a routing table
- People use a "greedy" strategy
- Forward to the friend nearest to the destination

### Recent results

- Milgrams results reproduced on better data
- Use online data (Livejournal, facebook)
- Containing approximate locations
- Simulate the process of forwarding letters
- Results similar to original experiment
- Relatively short diameter, successful decentralized search

# In popular culture

- Erdos distance
- Kevin bacon distance

# Definition of small worlds

- Small diameter
- Large clustering coefficient
  - Related to homophily similar people connect to each-other
  - "Similar": close in some coordinate value (or metric)
- Supports decentralized search
  - People find short paths without knowing the entire network
- (Usually) High expansion

### Model 1: Watts and Strogatz

Nature 1998

- Parameters n, k, p  $n > k > \ln n$ 
  - Often k is taken to be a constant in practice with the idea that people cannot have infinitely large friend-circles
- Put nodes in a ring of size n
- Connect each to k/2 neighbors on each side

### Model 1: Watts and Strogatz

Nature 1998

- Parameters n, k, p  $n > k > \ln n$ 
  - Often k is taken to be a constant in practice with the idea that people cannot have infinitely large friend-circles
- Put nodes in a ring of size n
- Connect each to k/2 neighbors on each side

• What is the diameter and CC?

### Model 1: Watts and Strogatz

Nature 1998

- Parameters n, k, p  $n > k > \ln n$ 
  - Often k is taken to be a constant in practice with the idea that people cannot have infinitely large friend-circles
- Put nodes in a ring of size n
- Connect each to k/2 neighbors on each side
- With probability p rewire each edge of a vertex to a random vertex

# Small world

• In between random and structured





(

### Properties

 Average clustering coefficient per vertex bounded away from zero

– In other words: at least a constant

- Connected: sufficient random edges + regular edges
- Short diameter

# Watts-strogatz model does not explain milgram's experiment

Watts-strogatz model does not explain milgram's experiment

- Milgram's experiment was on 2D plane
- Watts strogatz does not support decentralized search

Watts-strogatz model does not explain milgram's experiment

- Milgram's experiment was on 2D plane
- Watts-strogatz does not support decentralized search (poly(log n)) steps to destination

# Outline

- A good small world model should support (poly(log n)) steps to destination
- We will show that watts strogatz needs poly(n)

- Kleinberg's model supports (log(n))<sup>2</sup> step route
  - Show that the route can be divided into O(log n) phases
  - Each phase takes O(log n)

# Decentralized search in random link networks

- Decentralized search does not work to produce short paths
- Let us consider 2D (n x n grid):
  - We want to show that if every node works only on its local information (edges it has)
- Then there is no algorithm that delivers the message in less than poly(n) messages.

# Decentralized search in random link networks

- Consider s and t separated by  $\Omega(n)$  hops
- Take ball B of extrinsic radius around n<sup>2/3</sup> t
  There are O(n<sup>2/3</sup>)<sup>2</sup> nodes in B
- When we are already at distance n<sup>2/3</sup> (on the edge of B)
  A long link can help only if it falls inside B
- Otherwise we take a step along a short link
- What is the probability that a random link from s hits B?
- This is ~  $O((n^{2/3})^2/n^2) = O(n^{-2/3})$
- The expected number of steps before getting a useful long link is :  $\Omega(n^{2/3})$

### Decentralized search

- Therefore long links are not really useful in reaching t
- The number of steps is poly(n).

# Model 2 : Kleinberg's model

- Idea: Long links are not helping much
  - Getting closer to the destination does not increase the chances of getting a long link close to destination.
- Make the probability of a long link sensitive to the distance

- Nearby nodes are more likely to have a long link

# Model 2 : Kleinberg's model

- Suppose d(u, v) is the extrinsic distance between nodes u and v in the plane
- Then u connects its long link to v
- with probability  $\propto rac{1}{d(u,v)^{lpha}}$

# Kleinberg's model

- Links to nearby nodes are more likely
  - A node knows more people locally
  - With increasing distance, it knows fewer and fewer people
  - At the largest scale it knows only a handful
  - More representative of how people have their contacts spread
- We want to show that the model permits short paths to be found

# The proportionality constant $Pr[(u, v)] = \frac{1}{\gamma} \frac{1}{d(u, v)^{\alpha}}$ $\alpha = 2 \Rightarrow \gamma = \Theta(\ln n)$

- Sketch of proof: Take rings of thickness 1 at distances 1,2,3...
- The number of nodes at distance d ~ Θ(d)
- Thus from any node:

$$\frac{1}{\gamma} \sum_{d=1}^{n} d^{-2} \Theta(d) = 1$$
$$\frac{1}{\gamma} \Theta\left(\sum_{d=1}^{n} \frac{1}{d}\right) = 1$$
$$\Rightarrow \frac{1}{\gamma} \Theta(\ln n) = 1$$

### Theorem

$$\alpha = 2$$

- Permits finding  $O(\log^2 n)$  intrinsic length paths
- Using local routing : Always move to the neighbor nearest to the destination

# Proof

- Main idea:
- In O(log n) steps, the extrinsic distance is halved
  Let us call this one phase
- In O(log n) phases, the distance will be 1
- So, we need to show the first claim: one phase lasts O(log n) steps

#### One Phase lasts log n steps

- Suppose distance from s to t is d
- take ball B of radius d/2 around t
- There are about Θ(d<sup>2</sup>) nodes in this area
- The probability that a long link hits B is

$$\frac{1}{\Theta(\log n)} \sum_{v \in B} d(s, v)^{-2} \ge \Theta\left(\frac{1}{\log n} d^2 d^{-2}\right) = \Theta\left(\frac{1}{\log n}\right)$$

# One phase lasts log n steps

- Thus, the expected number of steps before we find a link into B is log n.
- And there are log n such phases
- Therefore, this method finds a path of log<sup>2</sup> n steps

### Other exponents

- < 2 : more like uniform random
- > 2 : Shorter links, almost same as basic grid..



# Generality

- Search is a very general problem
- Search for an item, search for a path, search for a set, search for a configuration
- Decentralized: Operation under small amount of information. (local, easy to distribute)

# Small worlds in other networks

- Brain neuron networks
- Telephone call graphs
- Voter network
- Social influence networks ...
- Applications:
- Peer to peer networks
- Mechanisms for fast spread of information in social networks
- Routing table construction