Basics and Random Graphs

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Webpage

- Check it regularly
- Announcements
- Lecture slides, reading material
- Do exercises. (exercise 0 up now)
- Preliminary reading for next week will be up.
- Set up ipython notebook and visualize some graphs
- Setup instructions on web page

Today

- What are random graphs?
- How can we define "random graphs"?
- Some properties of random graphs

Erdos - Renyi Random graphs

Erdos - Renyi Random graphs

$$
\mathcal{G}(n, p)
$$

- n : number of vertices
- p: probability that any particular edge exists
- Take V with n vertices
- Consider each possible edge. Add it to E with probabilityp

Expected number of edges in an ER graph

- Expected total number of edges
- Expected number of edges at any vertex

Expected number of edges

- Expected total number of edges $\binom{n}{2} p$
- Expected number of edges at any vertex

$$
(n-1) p
$$

Expected number of edges

- For $p=\frac{c}{n-1}$
- The expected degree of a node is : ?

Isolated vertices

- How likely is it that the graph has isolated vertices?

Isolated vertices

- How likely is it that the graph has isolated vertices?
- What happens to the number of isolated vertices as p increases?

Probability of Isolated vertices

- Isolated vertices are
- Likely when: $\quad p<\frac{\ln n}{n}$
- Unlikely when: $\quad p>\frac{\ln n}{n}$
- Let's deduce

Useful inequalities

$$
\begin{aligned}
& \left(1+\frac{1}{x}\right)^{x} \leq e \\
& \left(1-\frac{1}{x}\right)^{x} \leq \frac{1}{e}
\end{aligned}
$$

Union bound

- For events A, B, C...
- $\operatorname{Pr}[\mathrm{A}$ or B or $\mathrm{C} \ldots] \leq \operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]+\operatorname{Pr}[\mathrm{C}]+\ldots$
- Theorem 1:
- If $\quad p=(1+\epsilon) \frac{\ln n}{n-1}$
- Then the probability that there exists an isolated vertex

$$
\leq \frac{1}{n^{\epsilon}}
$$

Terminology of high probability

- Poly(n) means a polynomial in n
- A polynomial in n is considered reasonably 'large’
- Whereas something like constant, or $\log \mathrm{n}$ is considered 'small'
- Something happens with high probability if

$$
\operatorname{Pr}[\text { event }] \geq\left(1-\frac{1}{\operatorname{poly}(n)}\right)
$$

- Thus for large n , w.h.p there is no isolated vertex
- Expected number of isolated vertices is miniscule
- Theorem 2
- For $p=(1-\epsilon) \frac{\ln n}{n-1}$
- Probability that vertex v is isolated $\geq \frac{1}{(2 n)^{1-\epsilon}}$
- Theorem 2
- For $p=(1-\epsilon) \frac{\ln n}{n-1}$
- Probability that vertex v is isolated $\geq \frac{1}{(2 n)^{1-\epsilon}}$
- Expected number of isolated vertices:

$$
\geq \frac{n}{(2 n)^{1-\epsilon}}=\frac{n^{\epsilon}}{2}
$$

Polynomial in n

Threshold phenomenon: Probability or number of isolated vertices

- The tipping point, phase transition

- Common in many real systems

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
- Edges AB and BC exist
- Then ABC is said to form a Triad
- Closed triad : Edge AC also exists
- Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc : average of cc of all nodes
- Global cc : ratio \# closed triads \# all triads

Avg CC In real networks

- Facebook (old data) ~ 0.6
- https://snap.stanford.edu/data/egonets-Facebook.html
- Google web graph ~0.5
- https://snap.stanford.edu/data/web-Google.html
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
- that the network has significant clustering/community structure

CC of a graph model

- If we are given a model of graphs
- Clustering is considered significant if
- CC is bounded from below by a constant
- E.g. cc(G) > 0.1
- Note that $\mathrm{cc}(\mathrm{G})>1 / \mathrm{n}$ does not help, since this can be very small
- Example problems:
- What can you say about CC of Trees?
- Complete graphs?
- Grids?
- Grids with diagonals added?

Global CC in ER graphs

- What happens when p is very small (almost 0)?
- What happens when p is very large (almost 1)?

Global CC in ER graphs

- What happens at the tipping point?

Theorem

- For $p=c \frac{\ln n}{n}$
- Global cc in ER graphs is vanishingly small
$\lim _{n \rightarrow \infty} c c(G)=\lim _{n \rightarrow \infty} \frac{\# \text { closed triads }}{\# \text { all triads }}=0$
- In other words, there is no constant c
- Such that cc(ER-graph) >c
- At the tipping point

Random graphs: Emergence of giant component

- Suppose N_{G} is the size of the largest connected component in an ER graph
- How does $\mathrm{N}_{\mathrm{G}} / \mathrm{N}$ change with p ?
- When is $\mathrm{N}_{\mathrm{G}} / \mathrm{N}$ at least a constant?
- (giant component: at least a constant fraction of nodes)

Giant component

- When $p=(1-\varepsilon) / n$
- W.h.p no GC, components of size $O(\log n)$
- When $p=(1+\varepsilon) / n$
- W.h.p GC exists, where $N_{G} / N \sim \varepsilon$
- When $p=1 / n$
- W.h.p Largest component has size $n^{2 / 3}$

