Basics and Random Graphs

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Webpage

- Check it regularly
- Announcements
- Lecture slides, reading material
- Do exercises. (exercise 0 up now)
- Preliminary reading for next week will be up.
- Set up ipython notebook and visualize some graphs
 - Setup instructions on web page

Today

What are random graphs?

– How can we define "random graphs"?

• Some properties of random graphs

Erdos – Renyi Random graphs

Erdos – Renyi Random graphs $\mathcal{G}(n,p)$

- n: number of vertices
- p: probability that any particular edge exists

- Take V with n vertices
- Consider each possible edge. Add it to E with probability p

Expected number of edges in an ER graph

• Expected total number of edges

• Expected number of edges at any vertex

Expected number of edges

• Expected total number of edges $\binom{n}{2}p$

Expected number of edges at any vertex

$$(n - 1)p$$

Expected number of edges

• For
$$p = \frac{c}{n-1}$$

• The expected degree of a node is : ?

Isolated vertices

How likely is it that the graph has isolated vertices?

Isolated vertices

How likely is it that the graph has isolated vertices?

• What happens to the number of isolated vertices as p increases?

Probability of Isolated vertices

- Isolated vertices are
- Likely when: $p < \frac{\ln n}{n}$
- Unlikely when: $p > \frac{\ln n}{n}$
- Let's deduce

Useful inequalities

Union bound

• For events A, B, C ...

• $Pr[A \text{ or } B \text{ or } C \dots] \leq Pr[A] + Pr[B] + Pr[C] + \dots$

• Theorem 1:
• If
$$p = (1 + \epsilon) \frac{\ln n}{n - 1}$$

- Then the probability that there exists an isolated vertex $\leq \frac{1}{n^{\epsilon}}$

Terminology of high probability

- Poly(n) means a polynomial in n
- A polynomial in n is considered reasonably 'large'
 - Whereas something like constant, or log n is considered 'small'
- Something happens with high probability if

$$\Pr[event] \ge \left(1 - \frac{1}{\operatorname{poly}(n)}\right)$$

- Thus for large n, w.h.p there is no isolated vertex
- Expected number of isolated vertices is miniscule

- Theorem 2 • For $p = (1 - \epsilon) \frac{\ln n}{n - 1}$
- Probability that vertex v is isolated $\geq \frac{\mathbf{1}}{(2n)^{1-\epsilon}}$

• Theorem 2
• For
$$p = (1 - \epsilon) \frac{\ln n}{n - 1}$$

- Probability that vertex v is isolated $\geq \frac{1}{(2n)^{1-\epsilon}}$
- Expected number of isolated vertices:

$$\geq \frac{n}{(2n)^{1-\epsilon}} = \frac{n^{\epsilon}}{2}$$

Polynomial in n

Threshold phenomenon: Probability or number of isolated vertices

• The tipping point, phase transition

• Common in many real systems

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
 Edges AB and BC exist
- Then ABC is said to form a *Triad*
 - Closed triad : Edge AC also exists
 - Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc : average of cc of all nodes
- Global cc : ratio
 # closed triads
 # all triads

Avg CC In real networks

- Facebook (old data) ~ 0.6
 - <u>https://snap.stanford.edu/data/egonets-Facebook.html</u>
- Google web graph ~0.5
 - <u>https://snap.stanford.edu/data/web-Google.html</u>
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
 - that the network has significant clustering/community structure

CC of a graph model

- If we are given a model of graphs
 - Clustering is considered significant if
 - CC is bounded from below by a constant
 - E.g. cc(G) > 0.1
 - Note that cc(G) > 1/n does not help, since this can be very small
- Example problems:
 - What can you say about CC of Trees?
 - Complete graphs?
 - Grids?
 - Grids with diagonals added?

Global CC in ER graphs

• What happens when p is very small (almost 0)?

• What happens when p is very large (almost 1)?

Global CC in ER graphs

• What happens at the tipping point?

Theorem

• For
$$p = c \frac{\ln n}{n}$$

• Global cc in ER graphs is vanishingly small

$$\lim_{n \to \infty} cc(G) = \lim_{n \to \infty} \frac{\# \text{ closed triads}}{\# \text{ all triads}} = 0$$

- In other words, there is no constant c
 - Such that cc(ER-graph) > c
 - At the tipping point

Random graphs: Emergence of giant component

 Suppose N_G is the size of the largest connected component in an ER graph

• How does N_G/N change with p?

- When is N_G/N at least a constant?
 - (giant component: at least a constant fraction of nodes)

Giant component

• When $p = (1-\epsilon)/n$

- W.h.p no GC, components of size O(log n)

• When $p = (1+\epsilon)/n$

– W.h.p GC exists, where N_G/N $\sim \epsilon$

• When p = 1/n

– W.h.p Largest component has size $n^{2/3}$