Power law networks

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.
Degree distribution

• A way of characterizing networks
• More complex than single numbers
• Many standard networks are known to have “standard” degree distributions
• Gives ways to incorporate notions of “popularity” and understand them
Degree distribution

• As a function of k, what fraction of pages in the network have k links?
• A histogram

• What does it look like in a random graph?
Degree distribution of a random graph

- Probability that a node has degree \(k \) is:
 - Given by binomial distribution:

\[
\binom{n - 1}{k} p^k (1 - p)^{n - 1 - k}
\]

Possible sets of \(k \) edges

Probability that all \(k \) are chosen

Probability that others are not chosen
Degree distribution in a random graph

- Probabilities fall off really fast away from the peak
 - Exponentially fast with k
 - Very low and high degree are very very unlikely
Suppose we take a real network like the world wide web, and compute degree distribution. What does that look like?

Let’s try.
Degree distribution in www

• For www snapshots, degree distribution follows approximately $\frac{1}{k^2}$
Power law networks

• With degree distribution \(\frac{1}{k^\alpha} \)

• For some constant \(\alpha \)
What do power law networks mean

• Most nodes have a low degree
• There are several hubs with high degree
 – Heavy tail
 – Probability drops polynomially
 • Slower than exponentially

Most nodes

Hubs
Hubs in power law networks

- Highly connected people/entities
- Critical in information dissemination
- Causes the network to have small diameter
- Examples
 - www, internet..
 - Social networks
 - Collaboration networks
Log log plots

• On ipython notebook
Log log plots for power law are nice and straight
Be careful with log log plots

• The “straight” part needs to extend quite a few orders of magnitude
• Fitting the straight line to determine the right coefficient alpha is not trivial due to non-linear nature of data
• Beware: log-normal distributions can look similar to power law.
Mean degree in a power law distribution

• The mean is finite iff $\alpha > 2$
 – (On an infinite graph)

• On the www α is slightly larger than 2
Model of power law networks

• We want a model that can be used to create power law networks
• Preferably one that mimics creation of actual power law networks like www
 – Gives us some idea of how these networks were created
Preferential attachment mechanism

• Idea: older and established (popular) sites are likely to have more links to them (yahoo, google...)

• So how about: When a new page arrives, it links to older pages in proportion to their popularity

• When a new link is created on a new page, randomly to older pages with probability of hitting a page x proportional to current popularity of x (number of links to x)
Preferential attachment model

• Takes a parameter p in $[0,1]$
• On a new page, create k links as follows:
• When creating a new link:
• With probability p
 – Assign it with preferential attachment mechanism
• With probability $1-p$
 – Assign it with uniform random probability to any existing page
Preferential attachment model

• Takes into consideration that popularity is not the only force behind link creation.
• The randomly assigned links model other reasons for link creation.
• Can be proven to produce power law. see [Kempe lecture notes, 2011]
• Produces same exponent as www for $p \sim 0.9$
• Let’s see in the data
Power law often appears in other places

• Popularity of books
• Popularity of people, songs,

• Preferential attachment & power law are often a signature of artificial selection and popularity
Other reasons for power law

• Optimization:
 – Power law found in linguistics (word lengths): most frequent words are short
 • Mandelbrot, Zipf: emerges from need for efficient communication

• Random processes:
 – Press space with probability p, else press a random letter key
 – This will produce a power law distribution of word lengths