Growth and Expansion Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Project

- Suggested list to be announced Thursday/Friday ($11^{\text {th }} / 12^{\text {th }}$)
- On Email and Piazza
- Select project by Thursday ($18^{\text {th }}$)
- You can work in groups of 1,2 or 3
- But Must submit individual reports
- The group is for discussion and possibly some common tasks. But marking is individual.
- A short (half page) proposal due around October 26.
- Not graded. Feedback only.
- Final report due around Nov 15.

Network construction

- Given any dataset with distances between items, we can construct a network

Computing distances for categorical data

- Suppose we are given categorical data
- E.g.
- We are given list of clubs people belong to
- Or list of songs they like etc..
- Cosine distance
- Represent the list as 0-1 vectors $\mathrm{A}, \mathrm{B}, \ldots$
- Find cosine similarity $\mathrm{S}_{\mathrm{c}}=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_{2}\|\mathbf{B}\|_{2}}$
- Cosine distance $\mathrm{d}_{\mathrm{c}}=1-\mathrm{S}_{\mathrm{c}}$

Computing distances for categorical data

- Jaccard similarity:
- Treat the vectors as sets A, B..
- And compute $\quad J(A, B)=\frac{|A \cap B|}{|A \cup B|}$:
- Distance $J_{d}=1-J$

Computing distances for categorical data

- Min category distance
- Take the size of the smallest club with both A and B as the distance
- You can come up with many other ways of computing distance

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball

- A ball of radius r at point v :
- The set of all points within distance rfrom v
- Called a diskin 2D
- Usually written as
- $B(v, r)$ or
- $B_{r}(v)$
- Sphere $S_{r}(v)$: set of points at distance exactly r from v
- The boundary of the ball
- 1-D sphere:boundary of a 2-D ball
- 2-D sphere:boundary of a 3-D ball etc

Size of a ball

- The "measure" in a suitable dimension
- Area in 2D
- Volume in 3D etc
- What about 1D?

- What is the measure of a sphere?
- 1D?
$-2 D$?

Growth of a metric

- How does the size of a ball $B(v, r)$ grow with radius?
- In 1D?
- In 2D?
- In 3D?

Growth of Euclidean metric

- D-dim

$$
\Theta\left(r^{d}\right)
$$

Growth can be used to detect dimension

- E.g. Long strips
- Growth is linear: $\mathrm{O}(\mathrm{r})$
- Compared to size, this is 1-D

Ball $B(v, r)$ in a graph

- The set of nodes within distance r of v
- Sphere: Nodes at distance exactly r
- Measure or volume:
- The number of nodes in $B_{G}(v, r)$ [Ball in metric G]
- The number of nodes in $B_{E}(v, r)$ [Ball in Euclidean metric]
- Growth
- How does $\left|\mathrm{B}_{\mathrm{G}}(\mathrm{v}, \mathrm{r})\right|$ grow with r
- For Chain?
- Cycle?
- Grid?
- Balanced binary tree?
- How do these change for $B_{E}(v, r)$?

Growth for balanced binary trees

Growth for balanced binary trees

Growth for balanced binary trees

What are the diameters of these graphs

- Finite chain
- Finite Grid
- Balanced binary tree
- Intrinsic metric
- Extrinsic metric

How does the sphere grow?

- For chain
- Grid
- Balanced binary tree
- Graph metric
- Euclidean metric

Doubling dimension

- A metric space X is said to have constant doubling dimension if
- Any ball $B_{x}(v, r)$ can be covered by
- At most M balls of radius $r / 2$
- For some constant M
- $\lg \mathrm{M}$ is called the doubling dimension of X
- (\lg is \log base 2)
- Measure of dimension in arbitrary structures, like graphs

Edge Expansion of Graphs

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of node set S:
- $e^{\text {out }}(\mathrm{S})$: edges with exactly one end-point in S
- Expansion:

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

Expansion

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

- Equivalently:

$$
\alpha=\min _{|S| \leq n / 2} \frac{\left|e^{\text {out }}(S)\right|}{|S|}
$$

Expanders

- A class of graphs with expansion at least a constant

$$
\alpha \geq c
$$

- For some constant c

Examples of expanders

- Random d-regular graphs for $d>3$
- All nodes have degree d
- Nodes are connected at random

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$
d_{1}, d_{2}, d_{3}, \ldots d_{n}
$$

- At each vertex i we d_{i} open-edges
- Pair up the edges randomly
- If all degrees = d
- Graph is called d-regular

Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

$$
O\left(\frac{d}{\alpha} \lg n\right)
$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n^{2})
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

