Growth and Expansion Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Project

- Suggested list to be announced Thursday/Friday (11th/12th)
 - On Email and Piazza
- Select project by Thursday (18th)
 - You can work in groups of 1,2 or 3
 - But Must submit individual reports
 - The group is for discussion and possibly some common tasks. But marking is individual.
- A short (half page) proposal due around October 26.
 - Not graded. Feedback only.
- Final report due around Nov 15.

Network construction

• Given any dataset with distances between items, we can construct a network

Computing distances for categorical data

- Suppose we are given categorical data
- E.g.
 - We are given list of clubs people belong to
 - Or list of songs they like etc..
- Cosine distance
 - Represent the list as 0-1 vectors A, B, ...
 - Find cosine similarity $S_c = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$
 - Cosine distance $d_c = 1 S_c$

Computing distances for categorical data

- Jaccard similarity:
 - Treat the vectors as sets A, B..
 - And compute $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$:
 - Distance $J_d = 1-J$

Computing distances for categorical data

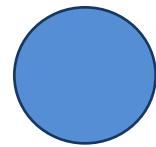
- Min category distance
 - Take the size of the smallest club with both A and B as the distance
- You can come up with many other ways of computing distance

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball

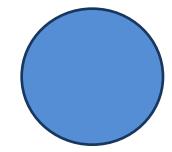
- A ball of radius r at point v:
 - The set of all points within distance r from v
 - Called a disk in 2D
- Usually written as
 - B(v,r) or
 - $B_r(v)$



- Sphere S_r(v): set of points at distance exactly r from v
 - The boundary of the ball
 - 1-D sphere: boundary of a 2-D ball
 - 2-D sphere: boundary of a 3-D ball etc

Size of a ball

- The "measure" in a suitable dimension
 - Area in 2D
 - Volume in 3D etc
 - What about 1D?



- What is the measure of a sphere?
 1D?
 - 2D?

Growth of a metric

- How does the size of a ball B(v,r) grow with radius?
- In 1D?
- In 2D?
- In 3D?

Growth of Euclidean metric

• D-dim

$$\Theta(r^d)$$

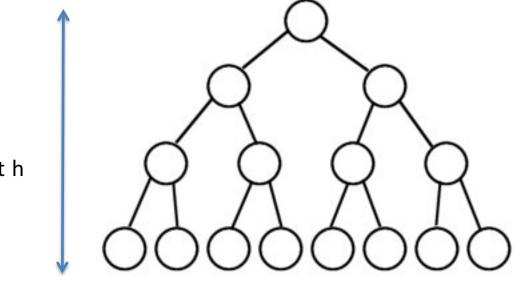
Growth can be used to detect dimension

- E.g. Long strips
 - Growth is linear: O(r)
 - Compared to size, this is 1-D

Ball B(v,r) in a graph

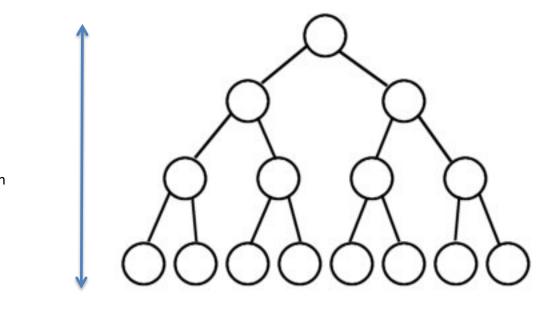
- The set of nodes within distance r of v
 - Sphere: Nodes at distance exactly r
- Measure or volume:
 - The number of nodes in $B_G(v, r)$ [Ball in metric G]
 - The number of nodes in $B_E(v, r)$ [Ball in Euclidean metric]
- Growth
 - How does $|B_G(v, r)|$ grow with r
 - For Chain?
 - Cycle?
 - Grid?
 - Balanced binary tree?
- How do these change for B_E(v, r) ?

Growth for balanced binary trees



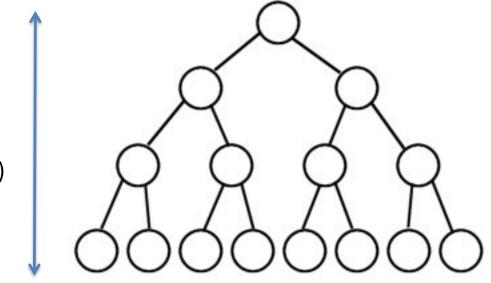
Height h

Growth for balanced binary trees



n=2^h

Growth for balanced binary trees



growth≈Θ(2^h)

What are the diameters of these graphs

- Finite chain
- Finite Grid
- Balanced binary tree

- Intrinsic metric
- Extrinsic metric

How does the sphere grow?

- For chain
- Grid
- Balanced binary tree

- Graph metric
- Euclidean metric

Doubling dimension

- A metric space X is said to have constant doubling dimension if
 - Any ball $B_X(v, r)$ can be covered by
 - At most M balls of radius r/2
 - For some constant M
- Ig M is called the doubling dimension of X
 (Ig is log base 2)
- Measure of dimension in arbitrary structures, like graphs

Edge Expansion of Graphs

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of node set S :

– e^{out}(S): edges with exactly one end-point in S

• Expansion: $\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$

Expansion

$$\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$$

• Equivalently:

$$\alpha = \min_{|S| \le n/2} \frac{|e^{out}(S)|}{|S|}$$

Expanders

A class of graphs with expansion at least a constant

For some constant c

Examples of expanders

- Random d-regular graphs for d>3
 - All nodes have degree d
 - Nodes are connected at random

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

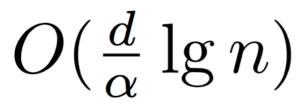
$$d_1, d_2, d_3, \ldots d_n$$

- At each vertex i we d_i open-edges
- Pair up the edges randomly
- If all degrees = d

- Graph is called d-regular

Expanders have small diameter

- A graph with degrees \leq d and expansion $\geq \alpha$
- Has diameter



Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n²)
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)