Spectral Graph Theory

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Spectral methods

- Understanding a graph using eigen values and eigen vectors of the matrix
- We saw:
- Ranks of web pages: components of 1st eigen vector of suitable matrix
- Pagerank or HITS are algorithms designed to compute the eigen vector
- Random walks and local pageranks help in understanding community structure

Laplacian

- $L=D-A$ [D is the diagonal matrix of degrees]

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- An eigen vector has one value for each node
- We are interested in properties of these values

Laplacian

- $L=D-A$ [D is the diagonal matrix of degrees]

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Symmetric. Real Eigen values.
- Row sum=0. Singular matrix. At least one eigen value $=0$.
- Positive semidefinite. Non-negative eigen values

Laplacian and random walks

- Suppose we are doing a random walk on a graph
- Let $u(i)$ be the probability of the walk being at node i
- E.g. initially it is at starting node s
- After 10 steps, probability is higher near s, low at nodes farther away
- Question: How does the probability change with time?
- This probability diffuses with time. Like heat diffuses

Laplacian matrix

- Imagine a small and different quantity of heat at each node (say, in a metal mesh)
- we write a function u : $u(i)=$ heat at i
- This heat will spread through the mesh/graph
- Question: how much heat will each node have after a small amount of time?

Heat diffusion

- Suppose nodes i and jare neighbors
- How much heat will flow fromito j ?

Heat diffusion

- Suppose nodes i and j are neighbors
- In a short time, how much heat will flow from i to j?
- Proportional to the gradient: $(\mathrm{u}(\mathrm{i})-\mathrm{u}(\mathrm{j}))^{*} \Delta t$ - Let us keep Δt fixed, and write just (u(i) - u(j))
- this is signed: negative means heat flows into i

Heat diffusion

- If i has neighbors j1, j2....
- Then heat flowing out of i is:

$$
\begin{aligned}
& =(u(i)-u(j 1))+(u(i)-u(j 2))+(u(i)-u(j 3))+\ldots \\
& =\operatorname{degree}(i) * u(i)-u(j 1)-u(j 2)-u(j 3)-\ldots .
\end{aligned}
$$

- Hence L = D - A

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The heat equation
 $$
\frac{\partial u}{\partial t}=L(u)
$$

- The net heat outflow of nodes in a time step
- The change in heat distribution in a small time step
- The rate of change of heat distribution

The smooth heat equation

- The smooth Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} .
$$

- The smooth heat equation:

$$
\Delta f=\frac{\partial f}{\partial t}
$$

Heat flow

- Will eventually converge to $\mathrm{v}[0]$: the zeroth eigen vector, with eigen value $\lambda_{0}=0$
$v[0]=$ const for the chain

Eigen vectors

- Other eigen vectors
- Encode various properties of the graph
- Have many applications

Application 1: Drawing a graph (Embedding)

- Problem: Computer does not know what a graph is supposed to look like
- A graph is a jumble of edges
- Consider a grid graph:
- We want it drawn nicely

Graph embedding

- Find positions for vertices of a graph in low dimension (compared to n)
- Common objective: Preserve some properties of the graph e.g. approximate distances between vertices. Create a metric
- Useful in visualization
- Finding approximate distances
- Clustering
- Using eigen vectors
- One eigen vector gives x values of nodes
- Other gives y-values of nodes ... etc

Draw with $v[1]$ and $v[2]$

- Suppose v[0], v[1], v[2]... are eigen vectors
- Sorted by increasing eigen values
- Plot graph using $X=\mathrm{v}[1]$, $\mathrm{Y}=\mathrm{v}$ [2]
- Produces the grid

Intuitions: the 1-D case

- Suppose we take the jth eigen vector of a chain
- What would that look like?
- We are going to plot the chain along x-axis
- The y axis will have the value of the node in the jth eigen vector
- We want to see how these rise and fall

Observations

- $\mathrm{j}=0$
- $\mathrm{j}=1$
- $\mathrm{j}=2$
- $\mathrm{j}=3$
- $\mathrm{j}=19$

For All j

- Low ones at bottom
- High ones at top
- Code on web page

Observations

- In Dim 1 grid:
$-v[1]$ is monotone
$-v[2]$ is not monotone
- In dim 2 grid:
- both $v[1]$ and $v[2]$ are monotone in suitable directions
- For low values of j :
- Nearby nodes have similar values
- Useful for embedding

Application 2: Colouring

- Colouring: Assign colours to vertices, such that neighboring vertices do not have same colour
- E.g. Assignment of radio channels to wireless nodes. Good colouring reduces interference
- Idea: High eigen vectors give dissimilar values to nearby nodes

- Use for colouring!

Application 3:

Cuts/segmentation/clustering

- Find the smallest 'cut'
- A small set of edges whose removal disconnects the graph

- Clustering, community detection...

Clustering/community detection

- $\mathrm{v}[1]$ tends to stretch the narrow connections: discriminates different communities

Clustering: community detection

- More communities
- Spectral embedding needs higher dimensions
- Warning: it does not always work so cleanly
- In this case, the data is very symmetric

Image segmentation

Shi \& malik '00

$v[1]$
$w e i g h t(i, j) \approx e^{-\left(p x_{i}-p x_{j}\right)^{2}}$

Laplacian

- Changed implied by L on any input vector can be represented
by sum of action of its eigen
vectors (we saw this last time for $M M^{T}$)
- $\mathrm{v}[0]$ is the slowest component of the change
- With multiplier $\lambda_{0}=0$
- The steady state component
- $v[1]$ is slowest non-zero component
- with multiplier λ_{1}

Spectral gap

- $\lambda_{1}-\lambda_{0}$
- Determines the overall speed of change
- If the slowest component $\mathrm{v}[1]$ changes fast
- Then overall the values must be changing fast
- Fast diffusion
- If the slowest component is slow
- Convergence will be slow
- Examples:
- Expanders have large spectral gaps
- Grids and dumbbells have small gaps ~ 1/n

Application 4: isomorphism testing

- Eigen values being different implies graphs are different
- Though not necessarily the other way

Spectral methods

- Wide applicability inside and outside networks
- Related to many fundamental concepts
- PCA
- SVD
- Random walks, diffusion, heat equation...
- Results are good many times, but not always
- Relatively hard to prove and understand properties
- Inefficient: eig. computation costly on large matrix
- (Somewhat) efficient methods exist for more restricted problems
- e.g. when we want only a few smallest/largest eigen vectors

