
Spectral	Graph	Theory

Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2018.



Spectral	methods

• Understanding	a	graph	using	eigen values	and	
eigen vectors	of	the	matrix

• We	saw:	
• Ranks	of	web	pages:	components	of	1st	eigen
vector	of	suitable	matrix

• Pagerank or	HITS	are	algorithms	designed	to	
compute	the	eigen vector

• Random	walks	and	local	pageranks help	in	
understanding	community	structure



Laplacian

• L	=	D	– A			[D	is	the	diagonal	matrix	of	degrees]

• An	eigen vector	has	one	value	for	each	node
• We	are	interested	in	properties	of	these	
values

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775



Laplacian

• L	=	D	– A			[D	is	the	diagonal	matrix	of	degrees]

• Symmetric.	Real	Eigen	values.	
• Row	sum=0.	Singular	matrix.	At	least	one	eigen
value	=0.

• Positive	semidefinite.	Non-negative	eigen values

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775



Laplacian and	random	walks

• Suppose	we	are	doing	a	random	walk	on	a	graph
• Let	u(i)	be	the	probability	of	the	walk	being	at	
node	i
– E.g.	initially	it	is	at	starting	node	s
– After	10	steps,	probability	is	higher	near	s,	low	at	
nodes	farther	away

– Question:	How	does	the	probability	change	with	
time?

– This	probability	diffuses	with	time.	Like	heat	diffuses



Laplacian matrix

• Imagine	a	small	and	different	quantity	of	heat		
at	each	node	(say,	in	a	metal	mesh)	

• we	write	a	function	u:	u(i)	=	heat	at	i
• This	heat	will	spread	through	the	mesh/graph
• Question:	how	much	heat	will	each	node	have	
after	a	small	amount	of	time?



Heat diffusion

• Suppose	nodes	i and	j	are	neighbors
– How	much	heat	will	flow	from	i to	j?	



Heat diffusion

• Suppose	nodes	i and	j	are	neighbors
• In	a	short	time,	how	much	heat	will	flow	from	
i to	j?	

• Proportional	to	the	gradient:	(u(i)	- u(j))*∆𝑡	
– Let	us	keep	∆𝑡	fixed,	and	write	just	(u(i)	- u(j))

• this	is	signed:	negative	means	heat	flows	into	i



Heat diffusion

• If	i has	neighbors	j1,	j2….
• Then	heat	flowing	out	of	i is:

=	(u(i)	- u(j1))		+		(u(i)	- u(j2))	+	(u(i)	- u(j3))	+	…
=	degree(i)*u(i)	- u(j1)	- u(j2)	- u(j3)	- ….

• Hence	L	=	D	- A



The heat equation

• The	net	heat	outflow	of	nodes	in	a	time	step
• The	change	in	heat	distribution	in	a	small	time	
step
– The	rate	of	change	of	heat	distribution

@u

@t
= L(u)



The	smooth	heat	equation

• The	smooth	Laplacian:

• The	smooth	heat	equation:

�f =
@f

@t



Heat	flow

• Will	eventually	converge	to	
v[0]	:	the	zeroth eigen
vector,	with	eigen value	�0 = 0

v[0]	=	const for	the chain



Eigen	vectors

• Other	eigen vectors
• Encode	various	properties	of	the	graph
• Have	many	applications	



Application	1:	Drawing	a	graph	
(Embedding)

• Problem:	Computer	does	
not	know	what	a	graph	is	
supposed	to	look	like

• A	graph	is	a	jumble	of	
edges

• Consider	a	grid	graph:
• We	want	it	drawn	nicely



Graph	embedding

• Find	positions	for	vertices	of	a	graph	in	low	
dimension	(compared	to	n)

• Common	objective:	Preserve	some	properties	of	
the	graph	e.g.	approximate	distances	between	
vertices.	Create	a	metric
– Useful	in	visualization
– Finding	approximate	distances
– Clustering	

• Using	eigen vectors
– One	eigen vector	gives	x	values	of	nodes
– Other	gives	y-values	of	nodes	…	etc



Draw	with	v[1]	and	v[2]

• Suppose	v[0],	v[1],	v[2]…	
are	eigen	vectors
– Sorted	by	increasing	eigen	
values

• Plot	graph	using	X=v[1],	
Y=v[2]

• Produces	the	grid



Intuitions:	the	1-D	case

• Suppose	we	take	the	jth eigen vector	of	a	
chain	

• What	would	that	look	like?	
• We	are	going	to	plot	the	chain	along	x-axis
• The	y	axis	will	have	the	value	of	the	node	in	
the	jth eigen vector	

• We	want	to	see	how	these	rise	and	fall



Observations

• j	=	0

• j=1

• j=2

• j	=3

• j	=	19



For All	j

• Low	ones	at	
bottom

• High	ones	at	top

• Code	on	web	
page



Observations

• In	Dim 1	grid:
– v[1]	is	monotone	
– v[2]	is	not	monotone	

• In	dim	2	grid:	
– both	v[1]	and	v[2]	are	
monotone	in	suitable	
directions	

• For	low	values	of	j:
– Nearby	nodes	have	similar	
values
• Useful	for	embedding



Application	2:	Colouring

• Colouring:	Assign	colours to	
vertices,	such	that	
neighboring	vertices	do	not	
have	same	colour
– E.g.	Assignment	of	radio	
channels	to	wireless	nodes.	
Good	colouring reduces	
interference

• Idea:	High	eigen vectors	give	
dissimilar values	to	nearby	
nodes

• Use	for	colouring!



Application	3:	
Cuts/segmentation/clustering

• Find	the	smallest	‘cut’
• A	small	set	of	edges	
whose	removal	
disconnects	the	graph

• Clustering,	community	
detection…	



Clustering/community	detection

• v[1]	tends	to	stretch	
the	narrow	
connections:	
discriminates	
different	
communities	



Clustering:	community	detection

• More	communities
• Spectral	embedding		
needs	higher	
dimensions

• Warning:	it	does	not	
always	work	so	cleanly

• In		this	case,	the	data	
is	very	symmetric



Image	segmentation
Shi	&	malik	’00



Laplacian

• Changed	implied	by	L	on	any	
input	vector	can	be	represented	
by	sum	of	action	of	its	eigen
vectors	(we	saw	this	last	time	
for	MMT)

• v[0]	is	the	slowest	component	
of	the	change	
– With	multiplier	λ0=0
– The	steady	state	component

• v[1]	is	slowest	non-zero	
component
– with	multiplier	λ1



Spectral	gap
• λ1	– λ0

• Determines	the	overall	speed	of	change
• If	the	slowest	component		v[1]		changes	fast
– Then	overall	the	values	must	be	changing	fast
– Fast	diffusion

• If the	slowest component	is slow
– Convergencewill be	slow

• Examples:	
– Expanders have large	spectral gaps
– Grids and	dumbbellshave small	gaps	~	1/n



Application	4:	isomorphism	testing

• Eigen	values	being	different	implies	graphs	are	
different

• Though	not	necessarily	the	other	way



Spectral	methods
• Wide	applicability	inside	and	outside	networks
• Related	to	many	fundamental	concepts

– PCA
– SVD

• Random	walks,	diffusion,	heat	equation…
• Results	are	good	many	times,	but	not	always
• Relatively	hard	to	prove	and	understand	properties
• Inefficient:	eig.	computation	costly	on	large	matrix
• (Somewhat)	efficient	methods	exist	for	more	restricted	

problems
– e.g.	when	we	want	only	a	few	smallest/largest	eigen vectors	


