Spectral Graph Theory

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.
Spectral methods

• Understanding a graph using eigen values and eigen vectors of the matrix

• We saw:

• Ranks of web pages: components of 1st eigen vector of suitable matrix

• Pagerank or HITS are algorithms designed to compute the eigen vector

• Random walks and local pageranks help in understanding community structure
Laplacian

- \(L = D - A \) [\(D \) is the diagonal matrix of degrees]

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
- \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

- An eigen vector has one value for each node
- We are interested in properties of these values
Laplacian

• $L = D - A$ [D is the diagonal matrix of degrees]

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
- \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

• Symmetric. Real Eigen values.

• Row sum=0. Singular matrix. At least one eigen value =0.

• Positive semidefinite. Non-negative eigen values
Laplacian and random walks

• Suppose we are doing a random walk on a graph
• Let $u(i)$ be the probability of the walk being at node i
 – E.g. initially it is at starting node s
 – After 10 steps, probability is higher near s, low at nodes farther away
 – Question: How does the probability change with time?
 – This probability diffuses with time. Like heat diffuses
Laplacian matrix

• Imagine a small and different quantity of heat at each node (say, in a metal mesh)
• we write a function $u: u(i) =$ heat at i
• This heat will spread through the mesh/graph
• Question: how much heat will each node have after a small amount of time?
Heat diffusion

• Suppose nodes i and j are neighbors
 – How much heat will flow from i to j?
Heat diffusion

• Suppose nodes i and j are neighbors
• In a short time, how much heat will flow from i to j?
• Proportional to the gradient: \((u(i) - u(j)) \Delta t\)
 – Let us keep \(\Delta t\) fixed, and write just \((u(i) - u(j))\)
• this is signed: negative means heat flows into i
Heat diffusion

• If i has neighbors j1, j2, ...
• Then heat flowing out of i is:
 \[= (u(i) - u(j1)) + (u(i) - u(j2)) + (u(i) - u(j3)) + \ldots\]
 \[= \text{degree}(i) \cdot u(i) - u(j1) - u(j2) - u(j3) - \ldots\]
• Hence \(L = D - A\)

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} - \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
The heat equation

\[
\frac{\partial u}{\partial t} = L(u)
\]

- The net heat flow out of nodes in a time step
- The change in heat distribution in a small time step
 - The rate of change of heat distribution
The smooth heat equation

• The smooth Laplacian:

\[\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}. \]

• The smooth heat equation:

\[\Delta f = \frac{\partial f}{\partial t} \]
Heat flow

- Will eventually converge to $v[0]$: the zeroth eigen vector, with eigen value $\lambda_0 = 0$
- $v[0]$ is a constant: no more flow!

$v[0] = \text{const}$
Eigen vectors

- Other eigen vectors
- Encode various properties of the graph
- Have many applications
Application 1: Drawing a graph (Embedding)

- Problem: Computer does not know what a graph is supposed to look like
- A graph is a jumble of edges
- Consider a grid graph:
- We want it drawn *nicely*
Graph embedding

• Find positions for vertices of a graph in low dimension (compared to n)
• Common objective: Preserve some properties of the graph e.g. approximate distances between vertices. Create a metric
 – Useful in visualization
 – Finding approximate distances
 – Clustering
• Using eigen vectors
 – One eigen vector gives x values of nodes
 – Other gives y-values of nodes … etc
Draw with \(v[1]\) and \(v[2]\)

- Suppose \(v[0], v[1], v[2]...\) are eigen vectors
 - Sorted by increasing eigen values
- Plot graph using \(X=v[1],\ Y=v[2]\)
- Produces the grid
Intuitions: the 1-D case

• Suppose we take the jth eigen vector of a chain
• What would that look like?
• We are going to plot the chain along x-axis
• The y axis will have the value of the node in the jth eigen vector
• We want to see how these rise and fall
Observations

- $j = 0$
- $j = 1$
- $j = 2$
- $j = 3$
- $j = 19$
For All j

- Low ones at bottom
- High ones at top
- Code on web page
Observations

- In Dim 1 grid:
 - $v[1]$ is monotone
 - $v[2]$ is not monotone

- In dim 2 grid:
 - Both $v[1]$ and $v[2]$ are monotone in suitable directions

- For low values of j:
 - Nearby nodes have similar values
 - Useful for embedding
Application 2: Colouring

• Colouring: Assign colours to vertices, such that neighboring vertices do not have the same colour.
 – E.g. Assignment of radio channels to wireless nodes. Good colouring reduces interference.
• Idea: High eigen vectors give dissimilar values to nearby nodes.
• Use for colouring!
Application 3:
Cuts/segmentation/clustering

• Find the smallest ‘cut’
• A small set of edges whose removal disconnects the graph
• Clustering, community detection...
Clustering/community detection

- $v[1]$ tends to stretch the narrow connections: discriminates different communities
Clustering: community detection

• More communities
• Spectral embedding needs higher dimensions
• Warning: it does not always work so cleanly
• In this case, the data is very symmetric
Image segmentation

Shi & Malik ’00

\[v[1] \]

\[\text{weight}(i, j) \approx e^{-(px_i - px_j)^2} \]
Laplacian

• Changed implied by L on any input vector can be represented by sum of action of its eigen vectors (we saw this last time for MM^T)

• $v[0]$ is the slowest component of the change
 – With multiplier $\lambda_0=0$

• $v[1]$ is slowest non-zero component
 – with multiplier λ_1
Spectral gap

• $\lambda_1 - \lambda_0$

• Determines the overall speed of change
• If the slowest component $v[1]$ changes fast
 – Then overall the values must be changing fast
 – Fast diffusion
• If the slowest component is slow
 – Convergence will be slow

• Examples:
 – Expanders have large spectral gaps
 – Grids and dumbbells have small gaps $\sim 1/n$
Application 4: isomorphism testing

- Eigen values different implies graphs are different
- Though not necessarily the other way
Spectral methods

- Wide applicability inside and outside networks
- Related to many fundamental concepts
 - PCA
 - SVD
- Random walks, diffusion, heat equation...
- Results are good many times, but not always
- Relatively to prove properties
- Inefficient: eig. computation costly on large matrix
- (Somewhat) efficient methods exist for more restricted problems
 - e.g. when we want only a few smallest/largest eigen vectors