Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.
Kernels

• Kernels are a type of measures of similarity
• Important technique in Machine learning
• Used to increase power of many techniques

• Can be defined on graphs
• Used to compare, classify, cluster many small graphs
 – E.g. Molecules, neighborhoods of different people in social networks etc...
The main ML question

• For classes that can be separated by a line
 – ML is easy
 – E.g. Linear SVM, Single Neuron

• But what if the separation is more complex?
The main ML question

• For classes that can be separated by a line
 – ML is easy
 – E.g. Linear SVM, Single Neuron

• What if the structure is more complex?
 – Cannot separated linearly
Lifting to higher dimensions

• Suppose we lift every \((x, y)\) point to
• \((x, y) \rightarrow (x, y, x^2 + y^2)\):

• Now there is a linear separator!
Exercise

• Suppose we have the following data:

• How would you lift and classify?

• Assuming there is a mechanism to find linear separators if they exist
Kernels

• A similarity measure $K: X \times X \to \mathbb{R}$ is a kernel if:

• There is an embedding ψ (usually to higher dimension),
 – Such that: $K(u, v) = \langle \psi(u), \psi(v) \rangle$
 – Where \langle, \rangle represents inner product
 – Positive definite kernels
Example kernel

- For the examples we saw earlier, the following kernel helps:

 $$K(u, v) = (u \cdot v)^2$$
Example kernel

• For the examples we saw earlier, the following kernel helps:

• $K(u, v) = (u \cdot v)^2$
 – This is true with lifting map
 $\psi(u) = (u_x^2, \sqrt{2} u_x u_v, u_y^2)$
 – Try it out!
More examples

- Polynomial Kernel
 \[K(u, v) = (1 + (u \cdot v))^k \]

- Gaussian Kernel
 \[K(u, v) = e^{-\frac{|u-v|^2}{2\sigma}} \]
 - Sometimes called Radial Basis Function (RBF) kernel
Graph kernels

• To compute similarity between two attributed graphs
 – Nodes can carry labels
 – E.g. Elements (C, N, H etc) in complex molecules

• Idea: It is not obvious how to compare two graphs
 – Instead compute walks, cycles etc on the graph, and compare those
Walk counting

• Count the number of walks of length k from i to j

• Idea: i and j should be considered close if
 – They are not far in the shortest path distance
 – And there are many walks of short length between them (so they are highly connected)

• So, there would be many walks of length $\leq k$
Walk counting

• Can be computed by taking k^{th} power of adjacency matrix A

• If $A^k(i, j) = c$, that means there are c walks of length k between i and j

• Note: A^k is expensive, but manageable for small graphs
Common walk kernel

• Count how many walks are common between the two graphs

• That is, take all possible walks of length k on both graphs.
 – Count the number that are exactly the same
 – Two walks are same if they follow the same sequence of labels
 • (note that other than labels, there is no obvious correspondence between nodes)
Random walk kernel

- Perform multiple random walks of length k on both graphs
- Count the number of walks common to both graphs
Tottering

• Walks can move back and forth between adjacent vertices
 – Small structural similarities can produce a large score

• Usual technique: for a walk v_1, v_2, \ldots prohibit return along an edge, ie $v_i = v_{i+2}$
Subtree kernel

• From each node, compute a neighborhood up to distance h

• From every pair of nodes in two graphs, compare the neighborhoods
 – And count the number of matches
Shortest path kernel

• Compute all pairs shortest paths in two graphs
• Compute the number of common sequences

• Tottering problem does not appear

• Problem: there can be many (exponentially many) shortest paths between two nodes
 – Computational problems
 – Can bias the similarity
Shortest distance kernel

• Instead use shortest distance between nodes
 • Always unique

• Method:
 – Compute all shortest distances SD(G1) and SD(G2) in graphs G1 and G2
 – Define kernel (e.g. Gaussian kernel) over pairs of distances: $k(s_1, s_2)$, where $s_1 \in SD(G_1), s_2 \in SD(G_2)$
 – Define shortest path (SP) kernel between graphs as sum of kernel values over all pairs of distances between two graphs
 • $K_{SP}(G_1, G_2) = \sum s_1 \sum s_2 k(s_1, s_2)$