Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Kernels

- Kernels are a type of measures of similarity
- Important technique in Machine learning
- Used to increase power of many techniques
- Can be defined on graphs
- Used to compare, classify, cluster many small graphs
 - E.g. Molecules, neighborhoods of different people in social networks etc...

The main ML question

- For classes that can be separated by a line
 - ML is easy
 - E.g. Linear SVM, Single
 Neuron
- But what if the separation is more complex?

The main ML question

- For classes that can be separated by a line
 - ML is easy
 - E.g. Linear SVM, Single
 Neuron
- What if the structure is more complex?
 - Cannot separated linearly

Lifting to higher dimensions

- Suppose we lift every (x,y) point to
- $(x, y) \to (x, y, x^2 + y^2)$:

• Now there is a linear separator!

Exercise

• Suppose we have the following data:

• How would you lift and classify?

Assuming there is a mechanism to find linear separators if they exist

Kernels

• A similarity measure $K: X \times X \to \mathbb{R}$ is a kernel if:

- There is an embedding ψ (usually to higher dimension),
 - Such that: $K(\boldsymbol{u}, \boldsymbol{v}) = \langle \psi(\boldsymbol{u}), \psi(\boldsymbol{v}) \rangle$
 - Where \langle , \rangle represents inner product
 - Positive definite kernels

Example kernel

- For the examples we saw earlier, the following kernel helps:
- $K(u, v) = (u \cdot v)^2$

Example kernel

- For the examples we saw earlier, the following kernel helps:
- $K(u, v) = (u \cdot v)^2$

- This is true with lifting map $\psi(u) = \left(u_x^2, \sqrt{2} u_x u_v, u_y^2\right)$

– Try it out!

More examples

Polynnomial Kernel

•
$$K(u,v) = (1 + (u \cdot v))^k$$

Gaussian Kernel

$$|u-v|^2$$

- $K(u,v) = e^{-2\sigma}$
 - Sometimes called Radial Basis Function (RBF) kernel

Graph kernels

- To compute similarity between two attributed graphs
 - Nodes can carry labels
 - E.g. Elements (C, N, H etc) in complex molecules
- Idea: It is not obvious how to compare two graphs
 - Instead compute walks, cycles etc on the graph, and compare those

Walk counting

- Count the number of walks of length k from i to j
- Idea: i and j should be considered close if
 - They are not far in the shortest path distance
 - And there are many walks of short length between them (so they are highly connected)

• So, there would be many walks of length $\leq k$

Walk counting

- Can be computed by taking kth power of adjacency matrix A
- If $A^k(i, j) = c$, that means there are c walks of length k between i and j
- Note: A^k is expensive, but manageable for small graphs

Common walk kernel

- Count how many walks are common between the two graphs
- That is, take all possible walks of length k on both graphs.
 - Count the number that are exactly the same
 - Two walks are same if the follow the same sequence of labels
 - (note that other than labels, there is no obvious correspondence between nodes)

Random walk kernel

- Perform multiple random walks of length k on both graphs
- Count the number of walks common to both graphs

Tottering

- Walks can move back and forth between adjacent vertices
 - Small structural similarities can produce a large score

• Usual technique: for a walk v_1, v_2, \dots prohibit return along an edge, ie $v_i = v_{i+2}$

Subtree kernel

• From each node, compute a neighborhood upto distance h

- From every pair of nodes in two graphs, compare the neighborhoods
 - And count the number of matches

Shortest path kernel

- Compute all pairs shortest paths in two graphs
- Compute the number of common sequences
- Tottering problem does not appear
- Problem: there can be many (exponentially many) shortest paths between two nodes
 - Computational problems
 - Can bias the similairity

Shortest distance kernel

- Instead use shortest distance between nodes
- Always unique
- Method:
 - Compute all shortest distances SD(G1) and SD(G2) in graphs G1 and G2
 - Define kernel (e.g. Gaussian kernel) over pairs of distances: $k(s_1, s_2)$, where $s_1 \in SD(G_1)$, $s_2 \in SD(G_2)$
 - Define shortest path (SP)kernel between graphs as sum of kernel values over all pairs of distances between two graphs

•
$$K_{SP}(G_1, G_2) = \sum_{s_1} \sum_{s_2} k(s_1, s_2)$$