Edge prediction and Miscellaneous topics

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.
Link prediction

• Given a network
• Can you predict which links are likely to form in future in a reasonable time interval?
• May be because two people become friends
 – Or they are already friends, but the link becomes visible
Link prediction

• Basic idea:
 – Similar people are likely to form links
• Homophily
 – People with similar attributes/interests form links
 – If we have external attributes (locations, interests) then we use them
• Also, friends of friends often become friends
 – Predict links based on common friends and neighborhoods
 – Note that this indirectly incorporates homophily effects
Prediction methods

• Give a score to each pair of nodes based on how likely they are to form link

• Example scoring strategies:
 – Graph distance (shortest path length)
 – Number of common neighbors
 – Jaccard similarity of neighborhoods
 – Preferential attachment
 – Random walk (hitting time based methods)
 • How soon does a random walk from x hit y?
 – Others
Results

• In reality, many unknown external factors affect links
• So raw accuracy itself is low
• However, we can compare them with baselines like random links
• Most methods perform much better than random links
• Nowell, Kleinberg. Link prediction problem. CIKM 03.
Friendship paradox

• Your friends have more friends than you do!
• Are you less social than others?
Friendship paradox

• The paradox:
• If you ask everyone to report their degrees and take average, you get the average degree
• If you ask everyone to report the average degrees of their friends and take the averages of all,
 – you get more than the overall average degree!
• Most of us have some popular friends (hence they are popular)
• If you pick a random friend of a random person, (random edge)
 – This friend is relatively likely to be popular, since popular nodes have more edges
• Average degree of nodes:
• A node with degree $d(v)$ contributes $d(v)$ once
• Average degree of a friend:
• Each person picks a friend and counts degree
• A node with degree $d(v)$ contributes $d(v)$ times, with total contribution $d(v)^2$
• A few nodes with relatively high $d(v)$ can skew the count
• https://en.wikipedia.org/wiki/Friendship_paradox
• S. L. Feld, Why your friends have more friends than you do, American journal of sociology, 1991
Identify spouses or romantic partners
Identify spouses or romantic partners

• Tie strengths are important
• Romantic ties tend to be of high strength, more likely to transmit information
• Do you expect romantic links to have high embeddedness (number/fraction of common friends)?
• People have clusters of friend circles
• Work, school, college, hobbies
• Edges in these have high embeddedness, even if they are not strong friends
• Spouses usually know some friends in each other's different circles
 – The edge does not have high embeddedness
 – Compared to links in groups such as school/college
Dispersion

• But, it has a dispersed structure:
 – There are several mutual friends, but the mutual friends are not well connected among themselves
Dispersion

• dispersion between u, v

• Notations:
 – $C(u,v)$: Common friends of u, v
 – G_u: Subgraph induced by u and all neighbors of u
 – d_{uv}: distance measured in G_u-{u,v}: Without using u or v

$$disp(u, v) = \sum_{s, t \in C(u, v)} d_{uv}(s, t)$$
Dispersion

\[disp(u, v) = \sum_{s,t \in C(u,v)} d_{uv}(s, t) \]

- Increases with more mutual friends
- Increases when these friends are far in the graph
- It is possible to use other distance measures
- Good results with \(d = 1 \) if no direct edge, \(0 \) otherwise
Normalized dispersion

- Use \(\text{norm}(u,v) = \frac{\text{disp}(u,v)}{\text{embed}(u,v)} \)
 - 48% accuracy
- Apply recursively, to weigh higher nodes with high dispersion
 - Gives 50.5% accuracy
 - 60% accuracy for married couples
- High accuracy considering hundreds of friends
- Works better than usual machine learning based on posts, visits, photos etc
- Best results with combination of features
- Backstrom and Kleinberg. Romantic partnerships and dispersion of social ties, ACM CSCW 2014