
Clustering	and	community	detection

Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2018.

Community	detection

• Given	a	network	
• What	are	the	“communities”
– Closely	connected	groups	of	nodes
– Relatively	few	edges	to	outside	the	community

• Similar	to	clustering	in	data	sets
– Group	together	points	that	are	more	close	or	
similar	to	each	other	than	other	points

Community	detection		by	clustering

• First,	define	a	metric	between	nodes
– Either	compute	intrinsic	metrics	like	all	pairs	
shortest	paths	[Floyd-Warshall algorithm	O(n3)]

– Or	embed	the	nodes	in	a	Euclidean	space,	and	use	
the	metric	there
• We	will	later	study	embedding	methods

• Apply	a	clustering	algorithm	with	the	metric

Clustering

• A	core	problem	of	machine	learning:
–Which	items	are	in	the	same	group?

• Identifies	items	that	are	similar	relative	to	rest	
of	data

• Simplifies	information	by	grouping	similar	
items
– Helps	in	all	types	of	other	problems

Clustering
• Outline	approach:
• Given	a	set	of	items

– Define	a	distance	between	 them
• E.g.	Euclidean	distance	between	points	in	a	plane;	Euclidean	
distance	between	other	attributes;	non-euclidean distances;	path	
lengths	in	a	network;	tie	strengths	in	a	network…

– Determine	a	grouping	(partitioning)	that	optimises	some	
function	(prefers	‘close’	items	in	same	group).

• Reference	for	clustering:	
– Charu	Aggarwal:	The	Data	Mining	Textbook,	Springer

• Free	on	Springer	site	(from	university	network)
– Blum	et	al.	Foundations	of	Data	Science	(free	online)

K-means	clustering

• Find	k-clusters

–With	centers	

– That	minimize	the	sum	of	squared	distances	of	
nodes	to	their	cluster	centers	(called	the	k-means	
cost)

K-means	clustering:	Lloyd’s	algorithm

• There	are	n	items
• Select	k	‘centers’	

– May	be	random	k	locations	in	space
– May	be	location	of	k	of	the	items	selected	randomly	
– May	be	chosen	according	to	some	method

• Iterate	till	convergence:	
– Assign	each	item	to	the	cluster	for	its	closest	center
– Recompute location	of	center	as	the	mean	location	of	all	
elements	 in	the	cluster	(their	centroid)

– Repeat	
• Warning:	Lloyd’s	algorithm	is	a	Heuristic.	Does	not	
guarantee	that	the	k-means	cost	is	minimised

K-means	

• Visualisations
• http://stanford.edu/class/ee103/visualizations
/kmeans/kmeans.html

• http://shabal.in/visuals/kmeans/1.html

K-means

• Ward’s	algorithm	(also	Heuristic)
– Start	with	each	node	as	its	own	cluster
– At	each	round,	find	two	clusters	such	that	merging	
them	will	reduce	the	k-means	cost	the	most

–Merge	these	two	clusters
– Repeat	until	there	are	k-clusters

K	means:	discussion
• Tries	to	minimise squared	sum	of	distances	of	items	to	

cluster	centers
– NP-hard.	Computationally	 intractable
– Algorithm	gives	local	optimum

• Depends	on	initialisation (starting	set	of	centers)
– Can	give	poor	results
– Submodular optimisation can	help

• The	right	‘k’	may	be	unknown
– Possible	strategy:	try	different	possibilities	 and	take	the	best

• Can	be	improved	by	heuristics	like	choosing	centers	
carefully
– E.g.	choosing	centers	to	be	as	far	apart	as	possible:	choose	one,	

choose	point	farthest	to	it,	choose	point	farthest	to	both	
(maximise min	distance	to	existing	set	etc)…

– Try	multiple	times	and	take	best	result..

K-medoids

• Similar,	but	now	each	center	must	be	one	of	
the	given	items
– In	each	cluster,	find	the	item	that	is	the	best	
‘center’	and	repeat

• Useful	when	there	is	no	ambient	space	
(extrinsic	metric)
– E.g.	A	distance	between	items	can	be	computed	
between	nodes,	but	they	are	not	in	any	particular	
Euclidean	space,	so	the	‘centroid’	in	Lloyd’s	
algorithm	is	not	a	meaningful	point

Other	center	based	methods

• K-center:	Minimise maximum	distance	to	
center:	

• K-median:	Minimise sum	of	distances:

Hierarchical	clustering

• Hierarchically	group	items
• Using	some	standard	clustering	method

Hierarchical	clustering
• Top	down	(divisive):
– Start	with	everything	 in	1	
cluster

– Make	the	best	division,	and	
repeat	in	each	subcluster

• Bottom	up	(agglomerative):
– Start	with	n	different	 clusters
– Merge	two	at	a	time	by	
finding	pairs	that	give	the	
best	improvement

Hierarchical	clustering
• Gives	many	options	for	a	
flat	clustering

• Problem:	what	is	a	good	
‘cut’	of	the	dendogram?

Density	based	clustering

• Group	dense	regions	
together

• Better	at	non-linear	
separations

• Works	with	unknown	
number	of	clusters

DBSCAN
• Density	at	a	data	point:

– Number	of	data	points	within	radius	Eps
• A	core	point:	

– Point	with	density	at	least	τ
• Border	point

– Density	less	than	τ,	but	at	least	one	core	point	within	radius	Eps
• Noise	point

– Neither	core	nor	border.	Far	from	dense	regions

Algorithm

• Construct	UDG	of	core	points

• Connected	components	of	the	
graph	give	the	clusters

• Assign	border	points	to	suitable	
clusters	(E.g.	to	the	cluster	to	
which	it	has	most	edges)

DBSCAN:	Discussions

• Requires	knowledge	of	suitable	radius	and	
density	parameters	(Eps and	τ)

• Does	not	allow	for	possibility	that	different	
clusters	may	have	different	densities

DBSCAN	

• Useful	in	cases	where	it	is	clear	which	objects	can	
be	considered	similar	but	number	of	clusters	is	
not	known

• Known	to	perform	very	well	in	real	problems

• Worst	case	complexity:	O(n2)

• Current	research:	Making	faster	in	special	cases,	
approximations,	distributed	algorithms.

Other	density	based	clustering

• Single	linkage	(same	as	Kruskal’s MST	
algorithm)
– Start	with	n	clusters
–Merge	two	clusters	with	the	shortest	bridging	link	
– Repeat	until	k	clusters

• Other,	more	robust	methods	exist

Communities

• Groups	of	friends
• Colleagues/collaborators
• Web	pages	on	similar	topics
• Biological	reaction	groups
• Similar	customers/users	…

Other	applications

• A	coarser	representation	of	networks
• One	or	more	meta-node	for	each	community
• Identify	bridges/weak-links
• Structural	holes

Community	detection	in	networks

• A	simple	strategy:
– Choose	a	suitable	distance	measure	based	on	
available	data	
• E.g.	Path	lengths;	distance	based	on	inverse	tie	
strengths;	size	of	largest	enclosing	group	or	common	
attribute;	distance	in	a	spectral	(eigenvector)	
embedding;	etc..

– Apply	a	standard	clustering	algorithm

Clustering	is	not	always	suitable	in	
networks

• Small	world	networks	have	small	diameter
– And	sometime	integer	distances
– A	distance	based	method	does	not	have	a	lot	of	
option	to	represent	similarities/dissimilarities

• High	degree	nodes	are	common
– Connect	different	communities
– Hard	to	separate	communities

• Edge	densities	vary	across	the	network
– Same	threshold	does	not	work	well	everywhere

Definitions	of	communities

• Varies.	Depending	on	application

• General	idea:	Dense	subgraphs:More	links	
within	community,	few	links	outside

• Some	types	and	considerations:
– Partitions:	Each	node	in	exactly	one	community
– Overlapping:	Each	node	can	be	in	multiple	
communities

Comment:	Finding	dense	subgraphs is	
hard	in	general

• Finding	largest	clique	
– NP-hard
– Computationally	intractable

• Decision	version:	Does	a	clique	of	size	k	exist?	
– Also	NP-complete
– Computationally	intractable
– Polynomial	time	(efficient)	algorithms	unlikely	to	
exist

• We	will	look	for	approximations

Dense	subgraphs:	Few	preliminary	
definitions

• For	S,	T	subgraphs of	V
• e(S,T):	Set	of	edges	from	S	to	T
– e(S)	=	e(S,S):	Edges	within	S

• dS(v)	:	number	of	edges	from	v	to	S
• Edge	density	of	S	:	|e(S)|/|S|
– Largest	for	complete	graphs	or	cliques

Dense subgraph Problem

• Find	the	subgraph with	largest	edge	density
• There	also	exists	a	decision	version:	
– Is	there	a	subgraph with	edge	density	>	α	

• Can	be	solved	using	Max	Flow	algorithms
– O(n2m)	:	inefficient	 in	large	datasets
– Finds	the	one	densest	subgraph

• Variant:	Find	densest	S	containing	given	subset	X
• Other	versions:	Find	subgraphs size	k	or	less
• NP-hard

Efficient	approximation	for	finding	
dense	S	containing	X

• Gives	a	1/2	approximation
• Edge	density	of	output	S	set	is	at	least	half	of	
optimal	set	S*

• (Proof	in	Kempe 2018:	http://www-
bcf.usc.edu/~dkempe/teaching/structure-
dynamics.pdf).

Betweenness&	graph	partitioning	
• We	want	to	split	network	into	tightly	knit	groups	
(communities	etc)

• Idea:	Identify	the	edges	connecting	different	
communities	and	remove	them

• These	edges	are	“central”	to	the	network
– They	lie	on	shortest	paths	

• Betweenness of	edge	(e)	(can	be	considered	for		vertex	
(v)):
– We	send	1	unit	of	traffic	between	 every	pair	of	nodes	in	
the	network

– measure	what	fraction	passes	through	e,	assuming	the	
flow	is	split	equally	among	all	shortest	paths.

Computing	betweenness

• Computing	all	shortest	paths	separately	is	
inefficient	

• A	more	efficient	way:
• From	each	node:	
– Step	1:	Compute	BFS	tree
– Step	2:	Find	number	of	shortest	paths	to	each	
node

– Step	3:	Find	the	flow	through	each	edge
– See	kleinberg-Easley	for	detailed	algorithm

Partitioning	(Girvan-newman)
Repeat:
• Find	edge	e	of	highest	

betweenness
• Remove	e

• Produces	a	hierarchic	
paritioning structure	as	the	
graph	decomposes	into	
smaller	components

• Network	version	of	
hierarchic	clustering

Modularity

• What	is	the	right	“cut”	in	a	hierarchic	
clustering	that	represents	good	communities?

• Clustering	a	graph
• Problem:	What	is	the	right	clustering?
• Idea:	Maximize	a	quantity	called	modularity

Modularity	of	subset	S

• Given	graph	G
• Consider	a	random	G’	graph	with	same	node	
degrees	(remember	configuration	model)
– Number	of	edges	in	S	in	G:	|e(S)|G
– Expected	number	of	edges	in	S	in	G’:	E[|e(S)|G’]
– Modularity	 of	S:	|e(S)|G - E[|e(S)|G’]
– More	coherent	communities	have	more	edges	inside	
than	would	be	expected	 in	a	random	graph	with	same	
degrees

– Note:	modularity	 can	be	negative

Modularity	of	a	clustering

• Take	a	partition	(clustering)	of	V:	
• Write	d(Si)	for	sum	of	degrees	of	all	nodes	in	Si
• It	can	be	shown	that	E[|e(S)|G’]	≈	d(Si)2
• Definition:	Sum	over	the	partition:

•

q(P) =
1

m

X

i

|e(Si)|G � 1

4m
d(si)

2

• Can	be	used	as	a	stopping	criterion	(or	finding	
right	level	of	partitioning)	in	other	methods
– Eg.	Girvan-newman

Modularity	based	clustering
• Modularity	is	meant	for	use	more	as	a	measure	of	quality,	not	so	

much	as	a	clustering	method

• Finding	clustering	with	highest	modularity	is	NP-hard
• Heuristic:	Louvain method:

– Place	each node in	its own community
– For each community,	consider merging with neighbor.	

• Make the greedy choice – make the merge that maximizes modularity
• Or do	not	merge if none increases modularity

– Repeat
• Note:	Modularity	is	a	relative	measure	for	comparing	community	

structure.	
• Not	entirely	clear	in	which	cases	it	may	or	may	not	give	good	results
• A	threshold	of	0.3	or	more	is	sometimes	 considered	to	give	good	

clustering

Karate	club	hierarchic	clustering

• Shape	of	nodes	gives	actual	split	in	the	club	
due	to	internal	conflicts
– Newman	2003

Correlation	clustering
• Some	edges	are	known	to	
be	similar/friends/trusted

• marked	“+”
• Some	edges	are	known	to	
be	
dissimilar/enemies/distrus
ted

• marked	“-”
• Maximize	the	number	of	+	
edges	inside	clusters	and	

• Minimize		the	number	of	-
edges	between	clusters

Applications

• Community	detection	based	on	similar	
people/users

• Document	clustering	based	on	known	
similarity	or	dissimilarity	between	documents

• Use	of	sentiments	and/or	other	divisive	
attributes

Features

• Clustering	without	need	to	know	number	of	clusters
– k-means,	medians,	clusters	etc need	to	know	number	of	
clusters	or	other	parameters	 like	threshold

– Number	of	clusters	depends	 on	network	structure
• Actually,	does	not	need	any	parameter	
• NP	hard
• Note	that	graph	may	be	complete	or	not	complete

– In	some	applications	with	unlabeled	edges,	it	may	be	
reasonable	to	change	edges	to	“+”	edges	and	non-edges	to	
“-”	edges

Approximation

• Naive	1/2	approximation:
– If	there	are	more	+	edges

• Put	them	all	in	1	cluster

– If	there	are	more	- edges
• Put	nodes	in	n	different	clusters

• (not	very	useful)!	

Better	approximations

• 2	ways	of	looking	at	it:	
– Maximize	agreement	or	Minimize	disagreement
– Similar	 idea,	but	we	know	different	approximation	
algorithms	

• Nikhil	Bansal et	al.	develop	PTAS	(polynomial	time	
approximation	scheme)	for	maximizing	
agreement:
– (1-ε)	approximation,	 running	 time

• Min-disagree:
– 4-approximation	

Local	detection	of	communities

• Suppose	there	is	a	huge	graph,	like	www,	or	
facebook network

• We	often	want	to	find	the	community	that	
contains	a	particular	node	or	group
– E.g.	to	make	recommendations:	 “your	friends	have	
watched	this	movie…”

– To	infer	preferences	 and	attributes
• Running	a	full	scale	community	detection	is	
computationally	impractical

• We	do	not	know	the	number	of	communities
• A	“local	method”	like	DBSCAN	can	help

Conductance:	measure	of	edges	inside	
community	vs	outside

• Given	subsets	S,	T	in	V
• e(S,T)	:	set	of	edges	between	S	and	T
• Volume	of	edges:	

• Conductance	of	S	is	defined	as:

• Communities	are	likely	to	have	low	conductance

vol(S) =
X

v2S

d(v)

Personalised pagerank

• Given	a	seed	set	X
• Find	the	community	S	that	contains	X
• Pagerank style:	Use	random	walks
• Algorithm
– Set	a	limit	k	to	number	of	steps	in	random	walks
– Repeat:

• Select	at	random	a	start	point	from	X
• Take	k	random	steps	in	the	graph

– Count	how	frequently	 each	node	occurs	– pagerank
– Nodes	in	the	community	have	high	pagerank

Personalised pagerank

• Alternative	Algorithm
– Set	a	probability		to	reset	random	walk
– Repeat:

• Select	at	random	a	start	point	from	X
• With	probability	1	– 𝜀move	to	a	random	neighbor
• With	probability	𝜀move	to	a	random	node	in	X
• Count	how	frequently	each	node	occurs	– pagerank

– Nodes	in	the	community	have	high	pagerank

Personalised pagerank

• Communities	have	low	conductance
• Therefore,	short	random	walks	will	leave	the	
community	only	rarely

• Therefore,	nodes	in	the	community	of	X	will	have	
high	pagerank compared	to	those	outside

• It	can	be	proved	that	if	X	is	in	a	low	conductance	
community,	nodes	outside	this	community	will	
occur	infrequently.	
– We	will	omit	this	proof

