Clustering and community detection

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Community detection

 Given a network
e What are the “communities”

— Closely connected groups of nodes
— Relatively few edges to outside the community

* Similar to clustering in data sets

— Group together points that are more close or
similar to each other than other points

Community detection by clustering

* First, define a metric between nodes

— Either compute intrinsic metrics like all pairs
shortest paths [Floyd-Warshall algorithm O(n3)]

— Or embed the nodes in a Euclidean space, and use
the metric there
* We will later study embedding methods

* Apply a clustering algorithm with the metric

Clustering

* A core problem of machine learning:
— Whichitems are in the same group?

* |dentifies items that are similar relative to rest
of data

* Simplifies information by grouping similar
items
— Helps in all types of other problems

Clustering

* Qutline approach:

e @Given a set of items

— Define a distance between them

e E.g. Euclidean distance between points in a plane; Euclidean
distance between other attributes; non-euclidean distances; path
lengths in a network; tie strengths in a network...

— Determine a grouping (partitioning) that optimises some
function (prefers ‘close’ items in same group).

* Reference for clustering:
— Charu Aggarwal: The Data Mining Textbook, Springer

* Free on Springer site (from university network)
— Blum et al. Foundations of Data Science (free online)

K-means clustering
* Find k-clusters ¢ = {C},...,C}}
— With centers cq,...,Cyg,

— That minimize the sum of squared distances of
nodes to their cluster centers (called the k-means
cost)

k
(I)kmeans(c> — >: >: d2(a’iacj)

j=1 a;e€C};

K-means clustering: Lloyd’s algorithm

There are n items

Select k ‘centers’

— May be random k locations in space

— May be location of k of the items selected randomly
— May be chosen according to some method

Iterate till convergence:
— Assign each item to the cluster for its closest center

— Recompute location of center as the mean location of all
elements in the cluster (their centroid)

— Repeat

Warning: Lloyd’s algorithm is a Heuristic. Does not
guaranteethat the k-means cost is minimised

K-means

 Visualisations

» http://stanford.edu/class/ee103/visualizations
/kmeans/kmeans.html

* http://shabal.in/visuals/kmeans/1.html

K-means

 Ward’s algorithm (also Heuristic)
— Start with each node as its own cluster

— At each round, find two clusters such that merging
them will reduce the k-means cost the most

— Merge these two clusters
— Repeat until there are k-clusters

K means: discussion

Tries to minimise squared sum of distances of items to
cluster centers

— NP-hard. Computationally intractable

— Algorithm gives local optimum

Depends on initialisation (starting set of centers)

— Can give poor results

— Submodular optimisation can help
The right ‘k” may be unknown

— Possible strategy: try different possibilities and take the best

Can be improved by heuristics like choosing centers
carefully

— E.g. choosing centers to be as far apart as possible: choose one,
choose point farthest to it, choose point farthest to both
(maximise min distance to existing set etc)...

— Try multiple times and take best result..

K-medoids

e Similar, but now each center must be one of
the given items

— In each cluster, find the item that is the best
‘center’ and repeat

e Useful when there is no ambient space
(extrinsic metric)

— E.g. A distance between items can be computed
between nodes, but they are notin any particular
Euclidean space, so the ‘centroid’in Lloyd’s
algorithm is not a meaningful point

Other center based methods

e K-center: Minimise maximum distance to

center: DPicenter (C) - m%X) d(ai’ Cj)
j=1 a;eC}

e K-median: Minimise sum of distances:

(kaedian(c) — Z Z d(aia Cj)

7j=1 aiECj

Hierarchical clustering

* Hierarchically group items
e Using some standard clustering method

Hierarchical clustering

* Top down (divisive):
— Start with everything in 1
cluster

— Make the best division, and
repeat in each subcluster

 Bottom up (agglomerative):

— Start with n different clusters

— Merge two at a time by
finding pairs that give the
best improvement

(a) Dendrogram

Hierarchical clustering

* Gives many options for a
flat clustering

* Problem: whatis a good
‘cut’ of the dendogram?

A B C D E F

(a) Dendrogram

Density based clustering

* Group dense regions D e
to get h er » | ;5;..,’;,#_.:

e Better at non-linear |
separations

e Works with unknown
number of clusters o, B,

°® o . ®
: .oo. ® ®
. A o. o. :
..o ° 0“
S o,

DBSCAN

Density at a data point:

— Number of data points within radius Eps ;I
A core point:

— Point with density at least Tt PN C
Border point /@;&‘

— Density less than T, but at least one core point within radius Eps 'B v~
Noise point

— Neither core nor border. Far from dense regions

Algorithm DBSCAN(Data: D, Radius: Eps, Density: 7)

Algorithm begi
in
Determine core, border and noise points of D at level (Eps, 7);
e Construct UDG of core points Create graph in which core points are connected

if they are within Eps of one another;
Determine connected components in graph;
* Connecjced components of the Assign each border point to connected component
graph give the clusters with which it is best connected;
return points in each connected component as a cluster;

« Assign border points to suitable end

clusters (E.g. to the cluster to
which it has most edges)

DBSCAN: Discussions

* Requires knowledge of suitable radius and
density parameters (Eps and t)

* Does not allow for possibility that different
clusters may have different densities

S T CLUSTERC

¥ 8N, CLUSTERB
Cor

iy SR
LUEnERd cr CLUSTER A
n:{'fﬂ :

— N w R (&) (2] ~ @ (o]
- . y . . . N

1 2 3 4 5 6 7 8 9 10 11 12

DBSCAN

Useful in cases where it is clear which objects can
be considered similar but number of clusters is

not known
Known to perform very well in real problems
Worst case complexity: O(n?)

Current research: Making faster in special cases,
approximations, distributed algorithmes.

Other density based clustering

* Single linkage (same as Kruskal’s MIST
algorithm)
— Start with n clusters
— Merge two clusters with the shortest bridging link
— Repeat until k clusters

e Other, more robust methods exist

Communities

* Groups of friends
* Colleagues/collaborators
 Web pages on similar topics

* Biological reaction groups
e Similar customers/users ...

Other applications

A coarser representation of networks

One or more meta-node for each community
ldentify bridges/weak-links

Structural holes

Community detection in networks

 Asimple strategy:

— Choose a suitable distance measure based on

available data

* E.g. Path lengths; distance based on inverse tie
strengths; size of largest enclosing group or common
attribute; distance in a spectral (eigenvector)

embedding; etc..
— Apply a standard clustering algorithm

Clustering is not always suitable in
networks

* Small world networks have small diameter
— And sometimeintegerdistances

— A distance based method does not have a lot of
option to represent similarities/dissimilarities

* High degree nodes are common
— Connectdifferent communities
— Hard to separate communities

* Edge densities vary across the network
— Same threshold does not work well everywhere

Definitions of communities

* Varies. Depending on application

* General idea: Dense subgraphs: More links
within community, few links outside

* Some types and considerations:

— Partitions: Each node in exactly one community

— Overlapping: Eachnode can be in multiple
communities

Comment: Finding dense subgraphs is
hard in general

* Findinglargest clique
— NP-hard
— Computationallyintractable
* Decision version: Does a clique of size k exist?
— Also NP-complete
— Computationallyintractable

— Polynomial time (efficient) algorithms unlikely to
exist

* We will look for approximations

Dense subgraphs: Few preliminary
definitions

ForS, T subgraphs of V

e(S,T): Set of edgesfromSto T

— e(S) = e(S,S): Edges within S

d<(v) : number of edges fromvto S
Edge density of S: [e(S)|/]|S]|

— Largest for complete graphs or cliques

Dense subgraph Problem

Find the subgraph with largest edge density

There also exists a decision version:
— Is there a subgraph with edge density > a

Can be solved using Max Flow algorithms
— O(n2m) : inefficient in large datasets
— Finds the one densest subgraph

Variant: Find densestS containing given subset X
Other versions: Find subgraphs size k or less
NP-hard

Efficient approximation for finding

dense S containing X

Let G, +— G .

for k = n downto | X|+ 1 do
Let v ¢ X be the lowest degree node in G \ X.
Let Gr—1 <« Gg \ {’U}

Output the densest subgraph among Gy, ...,G\x|.

* Givesa 1/2 approximation

 Edge density of output S setis at least half of
optimal set S*

* (Proofin Kempe 2018: http://www-
bcf.usc.edu/~dkempe/teaching/structure-
dynamics.pdf).

Betweenness & graph partitioning

We want to split network into tightly knit groups
(communities etc)

|dea: Identify the edges connecting different
communities and remove them
These edges are “central” to the network

— They lie on shortest paths

Betweenness of edge (e) (can be considered for vertex
(V)):

— We send 1 unit of traffic between every pair of nodes in
the network

— measure what fraction passes through e, assuming the
flow is split equally among all shortest paths.

Computing betweenness

* Computing all shortest paths separately is
inefficient

* A more efficient way:

* From each node:
— Step 1: Compute BFS tree

— Step 2: Find number of shortest paths to each
node

— Step 3: Find the flow through each edge
— See kleinberg-Easley for detailed algorithm

Repeat:

* Find edge e of highest
betweenness

* Remove e

* Produces a hierarchic
paritioning structure as the
graph decomposes into
smaller components

e Network version of
hierarchic clustering

Modularity

What is the right “cut” in a hierarchic
clustering that represents good communities?

Clustering a graph
Problem: What is the right clustering?

ldea: Maximize a quantity called modularity

Modularity of subset S

* Given graph G

e Considera random G’ graph with same node
degrees (remember configuration model)
— Number of edges in Sin G: |e(S)]¢
— Expected number of edges in Sin G’: E[|e(S)| 4]
— Modularity of S: |e(S)|¢ - E[|e(S)]|]

— More coherent communities have more edges inside
than would be expected in a random graph with same
degrees

— Note: modularity can be negative

Modularity of a clustering

Take a partition (clustering) of V: p — 1g, ..

7Sk}

Write d(S;) for sum of degrees of all nodes in S,

It can be shown that E[|e(S)]|] = d(S))?2

Definition: Sum over the partition:

Z e(

\G——d(i)’

e Can be used as a stopping criterion (or finding
right level of partitioning) in other methods

— Eg. Girvan-newman

Modularity based clustering

Modularity is meant for use more as a measure of quality, not so
much as a clustering method

Finding clustering with highest modularity is NP-hard
Heuristic: Louvain method:
— Place each node in its own community

— For each community, consider merging with neighbor.
* Make the greedy choice — make the merge that maximizes modularity
e Or do not merge if none increases modularity

— Repeat

Note: Modularity is a relative measure for comparing community
structure.

Not entirely clear in which cases it may or may not give good results

A threshold of 0.3 or more is sometimes considered to give good
clustering

Karate club hierarchic clustering

* Shape of nodes gives actual split in the club
due to internal conflicts

— Newman 2003

—_—

[]

O000000000000000

|/

1 6177 5111220 2 182214 4 13 8 3 10 2319161521 9 3133292526322427 303428

Correlation clustering

Some edges are known to
be similar/friends/trusted

marked “+”

Some edges are known to
be

dissimilar/enemies/distrus
ted

marked “-”

Maximize the number of +
edges inside clustersand

Minimize the number of -
edges between clusters

Applications

e Community detection based on similar
people/users

* Document clustering based on known
similarity or dissimilarity between documents

e Use of sentiments and/or other divisive
attributes

Features

Clustering without need to know number of clusters

— k-means, medians, clusters etc need to know number of
clusters or other parameters like threshold

— Number of clusters depends on network structure
Actually, does not need any parameter

NP hard

Note that graph may be complete or not complete

— In some applications with unlabeled edges, it may be
reasonable to change edges to “+” edges and non-edges to

o n

- edges

Approximation

* Naive 1/2 approximation:
— If there are more + edges

e Put them allin 1 cluster

— If there are more - edges

 Put nodes in n different clusters

* (not very useful)!

Better approximations

e 2 ways of looking at it:
— Maximize agreement or Minimize disagreement

— Similar idea, but we know different approximation
algorithms

* Nikhil Bansal et al. develop PTAS (polynomial time
approximation scheme) for maximizing
agreement:

— (1-€) approximation, running time O(n2eo(1/€))

* Min-disagree:

— 4-approximation

Local detection of communities

Supposethere is a huge graph, like www, or
facebook network

We often want to find the community that
contains a particular node or group

— E.g. to make recommendations: “your friends have
watched this movie...”

— To infer preferences and attributes

Running a full scale community detectionis
computationally impractical

We do not know the number of communities
A “local method” like DBSCAN can help

Conductance: measure of edges inside
community vs outside

 Given subsetsS, TinV
e ¢(S,T):setof edgesbetweenSand T
* Volume of edges: vol(S) = d(v)

veS

* Conductanceof S is defined as:
e(S, S)
min(vol(S), vol(S))

O(S) :=

« Communities are likely to have low conductance

Personalised pagerank

Given a seed set X
Find the community S that contains X

Pagerank style: Use random walks
Algorithm

— Set a limit k to number of steps in random walks
— Repeat:

* Select at random a start point from X
* Take k random steps in the graph

— Count how frequently each node occurs — pagerank
— Nodes in the community have high pagerank

Personalised pagerank

* Alternative Algorithm
— Set a probability to reset random walk
— Repeat:

e Select at random a start point from X
* With probability 1 — € move to a random neighbor
* With probability € move to a random node in X

* Count how frequently each node occurs — pagerank

— Nodes in the community have high pagerank

Personalised pagerank

Communities have low conductance

Therefore, short rand
communityonly rare

om walks will leave the
Yy

Therefore,nodesin t

ne community of X will have

high pagerank compared to those outside

It can be proved that

if X isin a low conductance

community, nodes outside this community will

occur infrequently.

— We will omit this proof

