Cascades

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Course

- Solutions to Ex0 are up
- Make sure you are comfortable with this material
- Notes 1 with exercise questions are up covering random graphs.
 - Covers proof of clustering coefficient in ER graphs
- You are encouraged to form small study groups

Network cascades

- Things that spread (diffuse) along network edges
- Epidemics
- Ideas
- Innovation:
 - We use technology our friends/colleagues use
 - Compatibility
 - Information/Recommendation/endorsement

Models

- Basic idea: Your benefits of adopting a new behavior increases as more of your friends adopt it
- Technology, beliefs, ideas... a "contagion"

Contagion Threshold

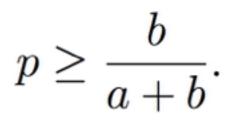
- v has d edges
- p fraction use A
- (1-p) use B
- v's benefit in using A is per A-edge
- v's benefit in using B is per B-edge
- a and b represent the quality of A and B

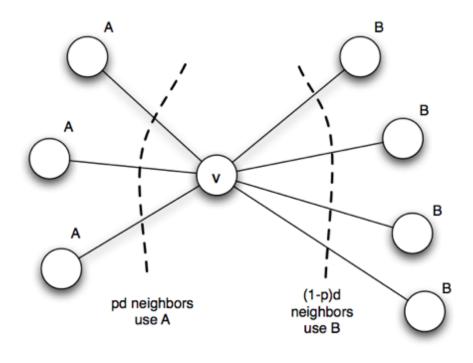
Contagion Threshold

• A is a better choice if:

$$pda \ge (1-p)db,$$

• or:





The contagion threshold

- Let us write threshold q = b/(a+b)
- If q is small, that means b is small relative to a

 Therefore A is useful even if only a small fraction
 of neighbors are using it
- If q is large, that means the opposite is true, and B is a better choice

Cascading behavior

- If everyone is using A (or everyone is using B)
- There is no reason to change equilibrium
- If both are used by some people, the network state may change towards one or the other.

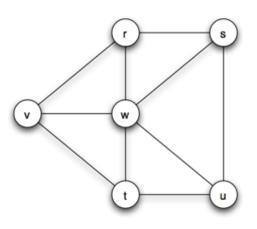
Cascades: The changes produce more change..

- Or there may be an equilibrium where change stops
 - We want to understand what that may look like

Cascades

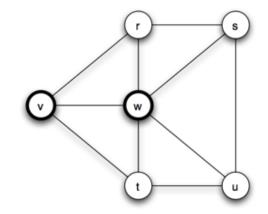
- Suppose initially everyone uses B
- Then some small number adopts A
 For some reason outside our knowledge
- Will the entire network adopt A?
- What will cause A's spread to stop?

Example

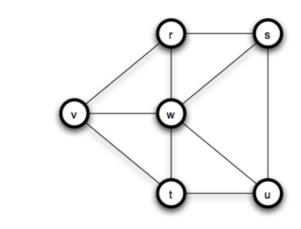


- a =3, b=2
- q = 2/5

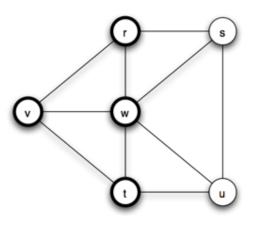
(a) The underlying network



(b) Two nodes are the initial adopters

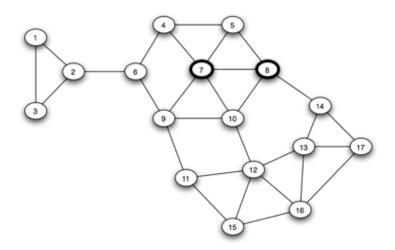


(d) After a second step, everyone has adopted



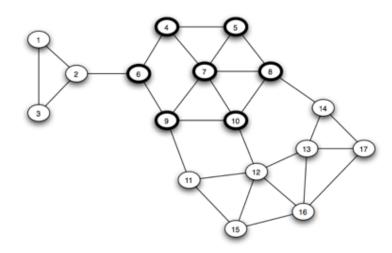
(c) After one step, two more nodes have adopted

Example 2



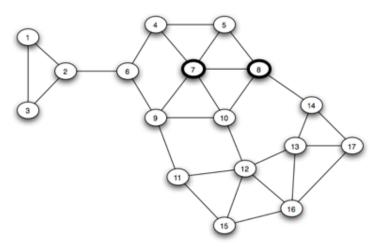
- a =3, b=2
- q = 2/5

(a) Two nodes are the initial adopters

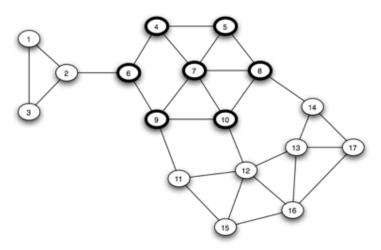


Spreading innovation

- A can be made to spread more by making a better product,
- say a = 4, then q = 1/3
- and A spreads
- Or, convince some key people to adopt A
- node 12 or 13



(a) Two nodes are the initial adopters



Stopping of spread

- Tightly knit communities stop the spread
 - More easily for "complex contagion" that need multiple enforcements
- Weak links are good for information transmission, not for behavior transmission
- Political conversion is rare
- Certain social networks are popular in certain demographics
- You can defend your "product" by creating strong communities among users

α - strong communities

Let us write d_s(v) for the degree of v in a subset of nodes S

The edges from v that go to S

- The set S of nodes forms an α-strong (or αdense) community if for each node v in S, d_s(v) ≥ αd(v)
- That is, at least α fraction of neighbors of each node is within the community

Theorem

- A cascade with contagion threshold q cannot penetrate an α -dense community with $\alpha > 1 q$
- Therefore, for a cascade with threshold q, and set X of initial adopters of A:
 - If the rest of the network contains a cluster of density > 1-q, then the cascade from X does not result in a complete cascade
 - 2. If the cascade is not complete, then the rest of the network must contain a cluster of density > 1-q

Proof

- In Kleinberg & Easley
- By contradiction: The first node in the cluster that converts, cannot convert.

Extensions

- The model extends to the case where each node v has
 - different a_v and b_v , hence different q_v
 - Exercise: What can be a form for the theorem on the previous slide for variable q_v?

Cascade capacity

• Upto what threshold q can a small set of early adopters cause a full cascade?

Cascade capacity

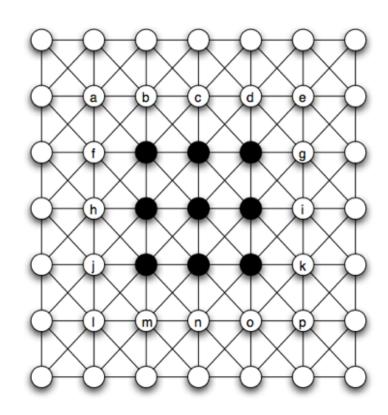
- Upto what threshold q can a small set of early adopters cause a full cascade?
- definition: Small: A finite set in an infinite network

Cascade capacities

• 1-D grid:

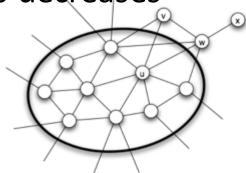
• capacity = 1/2

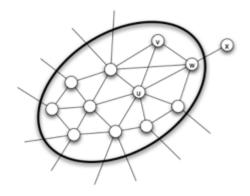
- 2-D grid with 8 neighbors:
- capacity 3/8



Theorem

- No infinite network has cascade capacity > 1/2
- Show that the interface/boundary shrinks
- Number of edges at boundary decreases at every step
- Take a node w at the boundary that converts in this step
- w had x edges to A, y edges to B
- q > 1/2 implies x > y
- True for all nodes
- Implies boundary edges decreases





• Implies, an inferior technology cannot win an infinite network

• Or: In a large network inferior technology cannot win with small starting ressources

Other models

- Non-monotone: an infected/converted node can become un-converted
- Schelling's model, granovetter's model: People are aware of choices of all other nodes (not just neighbors)

Causing large spread of cascade

- Viral marketing with restricted costs
- Suppose you have a budget of converting k nodes
- Which k nodes should you convert to get as large a cascade as possible?

Start with a simpler problem

 Suppose each node has a "sphere of influence" – other nearby nodes it can affect

• Which k nodes do you select to cover the most nodes with their sphere of influence?