Social and Technological Networks

Edinburgh, 2018

Exercises 5. Clustering and community detection.

Suppose G = (V, E) is an ER graph with p = c/n, and $S, T \subset V$ are two given sets of αn vertices each.

Q 1. First of all, show that the probability that there are no edges between *S* and *T* is $\leq e^{-c\alpha^2 n}$.

Q 2. Now, check that the number of possible choices of *S* and *T* is at most $\binom{n}{\alpha n}^2$.

Q 3. Now show that, if $c > 2 \ln(e/\alpha)/\alpha$, the probability that there are no two communities *S* and *T* with an edge between them tends to zero as *n* grows.

For the solution to this, see Dan Spielman's notes, Sec 3.6.

Other notes.

Rik Sarkar

Q 4. How fast can the edge density of a subset $S \subset V$ grow? Suppose we use notion n = |V| and x = |S|.

Answer. The number of edges in *S* can be as large as $\Theta(x^2)$, so the density can be $\Theta(x)$. Since *x* can be as large as $\Theta(n)$, the edge density can grow as $\Theta(n)$.

Q 5. Give example of two graphs *A*, *B*, such that *A* contains a smaller fraction of possible edges than *B*, but has greater density.

Answer. This will simply be a case where *A* is a bigger graph than *B*. E.g. *B* is the complete graph on 3 vertices. *A* is a graph on 10 vertices, where each vertex has 5 edges.