
Influence	maximisa-on	
	

Social	and	Technological	Networks	

Rik	Sarkar	
	

University	of	Edinburgh,	2017.	

Project	&	office	hours	

•  Extra	office	hours:		
– Friday	10th	Nov	14:30	–	15:30	
– Monday	13th	Nov	13:00	–	14:00		

Project	
•  No	need	to	do	lots	of	stuff	
•  Trying	a	few	interes-ng	ideas	would	be	fine	
•  Think	crea-vely.	What	is	a	new	angle	or	
perspec-ve	you	can	try?	
–  Look	for	something	that	is	not	too	hard	to	implement	
–  If	it	looks	promising,	you	can	try	out	later	in	more	
detail	

•  Think	about	how	to	write	in	a	way	to	emphasize	
the	original	idea.		
–  Bring	it	up	right	at	the	start	(-tle,	abstract,	intro).	If	it	
is	buried	a\er	several	pages,	no	one	will	no-ce	

Maximise	the	spread	of	a	cascade	

•  Viral	marke-ng	with	restricted	costs	
•  Suppose	you	have	a	budget	of	reaching	k	
nodes	

•  Which	k	nodes	should	you	convert	to	get	as	
large	a	cascade	as	possible?	

Classes	of	problems	

•  Class	P	of	problems	
– Solu-ons	can	be	computed	in	polynomial	-me	
– Algorithm	of	complexity	O(poly(n))	
– E.g.	sor-ng,	spanning	trees	etc	

•  Class	NP	of	problems	
– Solu-ons	can	be	checked	in	polynomial	-me,	but	
not	necessarily	computed	

– E.g.	All	problems	in	P,	factorisa-on,	sa-sfiability,	
set	cover	etc		

Hard	problems	

•  Computa-onally	intractable	
–  Those	not	(necessarily)	in	P	
–  Requires	more	-me,	e.g.	2n	:	trying	out	all	possibili-es	

•  Standing	ques-on	in	CS:	is	P	=	NP?	
– We	don’t	know	

•  Important	point:	
– Many	problems	are	unmanageable	

•  Require	exponen-al	-me	
•  Or	high	polynomial	-me,	say:	n10	
•  In	large	datasets	even	n4	or	n3	can	be	unmanageable	

Approxima-ons	

•  When	we	have	too	much	computa-on	to	
handle,	we	have	to	compromise	

•  We	give	up	a	liele	bit	of	quality	to	do	it	in	
prac-cal	-me	

•  Suppose	the	best	possible	(op-mal)	solu-on	
gives	us	a	value	of	OPT	

•  Then	we	say	an	algorithm	is	a	c-approxima-on	
•  If	it	gives	a	value	of	c*OPT	

Examples	
•  Suppose	you	have	k	cameras	to	place	in	building	
how	much	of	the	floor	area	can	your	observa-on	
cover?	
–  If	the	best	possible	coverage	is	A	
– A	¾		approxima-on	algorithm	will	cover	at	least	3A/4		

•  Suppose	in	a	network	the	maximum	possible	size	
of	a	cascade	with	k	star-ng	nodes	is	X	
–  i.e	a	cascade	star-ng	with	k	nodes	can	reach	X	nodes	
– A	½-approxima-on	algorithm	that	guarantees	
reaching	X/2	nodes	

Back	to	influence	maximisa-on	
•  Models	
•  Linear	contagion	threshold	model:	

–  The	model	we	have	used:	node	ac-vates	to	use	A	instead	of	B	
–  Based	on	rela-ve	benefits	of	using	A	and	B	and	how	many	
friends	use	each	

•  Independent	ac-va-on	model:	
–  If	node	u	ac-vates	to	use	A,	then	u	causes	neighbor	v	to	ac-vate	
and	use	A	with	probability		
•  pu,v	

•  That	is,	every	edge	has	an	associated	probability	of	spreading	
influence	(like	the	strength	of	the	-e)	

•  Think	of	disease	(like	flu)	spreading	through	friends	

Hardness	

•  In	both	the	models,	finding	the	exact	set	of	k	
ini-al	nodes	to	maximize	the	influence	
cascade	is	NP-Hard	

Approxima-on	

•  OPT	:	The	op-mum	result	—
the	largest	number	of	nodes	
reachable	with	a	cascade	
star-ng	with	k	nodes	

•  There	is	a	polynomial	-me	
algorithm	to	select	k	nodes		
that	guarantees	the	cascade	
will	spread	to																nodes	

✓
1� 1

e

◆
·OPT

•  To	prove	this,	we	will	use	a	property	called	
submodularity	

Example:	Camera	coverage	
•  Suppose	you	are	placing	
sensors/cameras	to	monitor	a	
region	(eg.	cameras,	or	
chemical	sensors	etc)	

•  There	are	n	possible	camera	
loca-ons	

•  Each	camera	can	“see”	a	
region	

•  A	region	that	is	in	the	view	of	
one	or	more	sensors	is	covered	

•  With	a	budget	of	k	cameras,	
we	want	to	cover	the	largest	
possible	area	
–  Func-on	f:	Area	covered	

Marginal	gains	

•  Observe:	
•  Marginal	coverage	
depends	on	other	
sensors	in	the	
selec-on	

Marginal	gains	

•  Observe:	
•  Marginal	coverage	
depends	on	other	
sensors	in	the	
selec-on	

Marginal	gains	

•  Observe:	
•  Marginal	coverage	
depends	on	other	
sensors	in	the	
selec-on	

•  More	selected	
sensors	means	less	
marginal	gain	from	
each	individual	

Submodular	func-ons	

•  Suppose	func-on	f(x)	
represents	the	total	
benefit	of	selec-ng	x	
– And	f(S)	the	benefit	of	
selec-ng	set	S	

•  Func-on	f	is	submodular	if:		

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Submodular	func-ons	

•  Means	diminishing	returns	
•  A	selec-on	of	x	gives	
smaller	benefits	if	many	
other	elements	have	been	
selected	

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Submodular	func-ons	

•  Our	Problem:	select	
loca-ons	set	of	size	k	that	
maximizes	coverage	

•  NP-Hard	

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Greedy	Approxima-on	algorithm	

•  Start	with	empty	set	S	=	∅	
•  Repeat	k	-mes:		
•  Find	v	that	gives	maximum	marginal	gain:	

•  Insert	v	into	S	
f(S [{v})� f(S)

•  Observa-on	1:	Coverage	
func-on	is	submodular	

•  Observa-on	2:	Coverage	
func-on	is	monotone:	

•  Adding	more	sensors	
always	increases	
coverage	

S ✓ T) f(S) f(T)

Theorem	

•  For	monotone	submodular	func-ons,	the	
greedy	algorithm	produces	a															
approxima-on	

•  That	is,	the	value	f(S)	of	the	final	set	is	at	least		

•  (Note	that	this	applies	to	maximisa-on	problems,	not	to	minimisa-on)	

✓
1� 1

e

◆

✓
1� 1

e

◆
·OPT

Proof		

•  Idea:	
•  OPT	is	the	max	possible	
•  On	every	step	there	is	at	
least	one	element	that	
covers	1/k	of	remaining:	

•  (OPT	-	current)	*	1/k	
•  Greedy	selects	that	element	

Proof		

•  Idea:	
•  At	each	step	coverage	
remaining	becomes		

	
•  Of	what	was	remaining	a\er	
previous	step	

✓
1� 1

k

◆

Proof		

•  A\er	k	steps,	we	have	
remaining	coverage	of	OPT	

•  Frac-on	of	OPT	covered:	

✓
1� 1

k

◆k

' 1

e

✓
1� 1

e

◆

•  Theorem:		
– Posi-ve	linear	combina-ons	of	monotone	
submodular	func-ons	is	monotone	submodular	

•  We	have	shown	that	monotone	submodular	
maximiza-on	can	be	approximated	using	
greedy	selec-on	

•  To	show	that	maximizing	spread	of	cascading	
influence	can	be	approximated:	
– We	will	show	that	the	func-on	is	monotone	and	
submodular	

Cascades	

•  Cascade	func-on	f(S):	
– Given	set	S	of	ini-al	adopters,	f(S)	is	the	number	
of	final	adopters	

•  We	want	to	show:	f(S)	is	submodular	
•  Idea:	Given	ini-al	adopters	S,	let	us	consider	
the	set	H	that	will	be	the	corresponding	final	
adopters	
– H	is	“covered”	by	S	

Cascade	in	independent	ac-va-on	
model	

•  If	node	u	ac-vates	to	use	A,	then	u	causes	
neighbor	v	to	ac-vate	and	use	A	with	probability		
–  pu,v		

•  Now	suppose	u	has	been	ac-vated	
– Neighbor	v	will	be	ac-vated	with	prob.	pu,v		
– Neighbor	w	will	be	ac-vated	with	prob.	pu,w	etc..	
– On	any	ac-va-on	of	u,	a	certain	set	of	other	nodes	
will	be	ac-vated.	(depending	on	random	choices,	like	
seed	of	random	number	generator.)	

–  ie.	if	u	is	ac-vated,	then	v	will	be	ac-vated,	but	w	will	
not	be	ac-vated…	etc	

Cascade	in	independent	ac-va-on	
model	

•  Let	us	take	one	such	set	of	ac-va-ons	(call	it	X1).	
•  Tells	us	which	edges	of	u	are	“effec-ve”	when	u	
is	“on”	

•  Similarly	for	other	nodes	v,	w,	y	….	
•  Gives	us	exactly	which	nodes	will	be	ac-vated	as	
a	consequence	of	u	being	ac-vated	

•  Exactly	the	same	as	“coverage”	of	a	sensor/
camera	network	

•  Say,	c(u)	is	the	set	of	nodes	covered	by	u.	

•  We	know	exactly	which	nodes	will	be	
ac-vated	as	a	consequence	of	u	being	
ac-vated	

•  Exactly	the	same	as	“coverage”	of	a	sensor	
network	

•  Say,	c(u)	is	the	set	of	nodes	covered	by	u.	
•  c(S)	is	the	set	of	nodes	covered	by	a	set	S	
•  f(S)	=	|c(S)|	is	submodular		

•  Remember	that	we	had	made	the	probabilis-c	choices	
for	each	edge	uv:	

•  That	is,	we	made	a	set	of	choices	represen-ng	the	
en-re	network	

•  We	used	X1	to	represent	this	configura-on		

•  We	showed	that	given	X1,	the	func-on	is	submodular	

•  But	what	about	other	X?		
–  Can	we	say	that	over	all	X	we	have	submodularity?	

•  We	sum	over	all	possible	Xi,	weighted	by	their	
probability.	

•  Non-nega-ve	linear	combina-ons	of	submodular	
func-ons	are	submodular,		
–  Therefore	the	sum	of	all	x	is	submodular	
–  (homework!)	

•  The	approxima-on	algorithm	for	submodular	
maximiza-on	is	an	approxima-on	for	the	cascade	in	
independent	ac-va-on	model	with	same	factor	

Linear	threshold	model	

•  Also	submodular	and	monotone	

•  Proof	ommieed.	

Applica-ons	of	submodular	
op-miza-on	

•  Sensing	the	contagion	
•  Place	sensors	to	detect	the	spread	
•  Find	“representa-ve	elements”:	Which	blogs	
cover	all	topics?	

•  Machine	learning	
•  Exemplar	based	clustering	(eg:	what	are	good	
seed	for	centers?)	

•  Image	segmenta-on	

Sensing	the	contagion	

•  Consider	a	different	problem:		
•  A	water	distribu-on	system	may	get	
contaminated	

•  We	want	to	place	sensors	such	that	
contamina-on	is	detected	

Social	sensing	
•  Which	blogs	should	I	read?	Which	twieer	accounts	should	I	

follow?	
–  Catch	big	breaking	stories	early	

•  Detect	cascades	
–  Detect	large	cascades		
–  Detect	them	early…	
–  With	few	sensors	

•  Can	be	seen	as	submodular	op-miza-on	problem:	
–  Maximize	the	“quality”	of	sensing	

•  Ref:	Krause,	Guestrin;	Submodularity	and	its	applica-on	in	op-mized	informa-on	
gathering,	TIST	2011	

Representa-ve	elements	

•  Take	a	set	of	Big	data	
•  Most	of	these	may	be	
redundant	and	not	so	useful	

•  What	are	some	useful	
“representa-ve	elements”?		
– Good	enough	sample	to	
understand	the	dataset	

–  Cluster	representa-ves	
–  Representa-ve	images	
–  Few	blogs	that	cover	main	
areas…	

Problem	with	submodular	
maximiza-on	

•  Too	expensive!	
•  Each	itera-on	costs	O(n):	have	to	check	each	element	to	

find	the	best	
•  Problem	in	large	datasets	
•  Mapreduce	style	distributed	computa-on	can	help	

–  Split	data	into	mul-ple	computers	
–  Compute	and	merge	back	results:	Works	for	many	types	of	
problems	

•  Ref:	Mirzasoleiman,	Karbasi,	Sarkar,	Krause;	Distributed	submodular	
maximiza-on:	Finding	representa-ve	elements	in	massive	data.	NIPS	
2013.	

Course	

•  No	Class	next	week	(week	9)	

•  Extra	office	hours	
– Friday	10	Nov	14:30	–	15:30	
– Monday	13	Nov	13:00	–	14:00		

