Robustness and Miscellaneous topics

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

Robustness, redundancy

- Ecology and environment
- Think food webs, dependencies, symbiosis
- Biology
- Metabolic networks
- Engineering
- Communication networks, Internet routing
- Road networks, infrastructure, supply chains
- http://barabasi.com/networksciencebook/

What is the probability that a graph is connected?

- We have seen emergence of giant component in random graphs
- Phase transition at $p=1 / n$
- Suppose we take a grid graph
- And place a pebble on each node with probability p
- E.g. there is an attack and each node survives with probability p

- Is there are giant component?

Percolation Threshold

- Yes, for p > 0.593
- Varies for other types of grids
- But exists
- Percolation also shows tipping point and giant component
b. $\quad p=0.7$

- S

$0<f<f_{c}$:
$f=f_{\mathrm{c}}$:
$f>f_{c}$:
There is a giant component.

The giant component vanishes.

The lattice breaks into many tiny components.

Network collapse

- May occur suddenly
- Financial or business networks may suddenly run out of money
- Ecological networks can disappear
- https://www.youtube.com/watch? $\mathrm{v}=\mathrm{xZ3OmlbtaMU}$

What if the collapse is infective?

- Fire spreads in a forest
- A power node failing can cause other nodes to fail
- A traffic blockage at a junction can cause nearby junction to

block

Infective/cascading failure

- Suppose every edge uv has a probability $p_{u v}$ that a failure on u will cause a failure of v
- Is there a set of critical targets?
- Is there a small set of nodes that can be targeted to bring down most of the network?
- How do you solve this problem?

Infective/cascading failure

- Size of cascading failure (in power grids) observed to follow power law
- Most failures are small
- Some big failures

Robustness of Power law networks

- Sometimes called scale free networks
- If nodes fail randomly
- Size of giant component decreases gradually
- Close to zero only for large fractions of (nearly all) nodes failing

Robustness of Power law networks

- The robustness to random failure comes from low probability of hubs failing
- However, removing starting from hubs (highest degree nodes) causes rapid failure
- Susceptible to planned attack
- Grids on the other had do not have obvious failure points.

Link prediction

- Given a network
- Can you predict which links are likely to form in future in a reasonable time interval?
- May be because two people become friends
- Or they are already friends, but the link becomes visible

Link prediction

- Basic idea:
- Similar people are likely to form links
- Homophily
- People with similar attributes/interests form links
- If we have external attributes (locations, interests) then we use them
- Also, friends of friends often become friends
- Predict links based on common friends and neighborhoods
- Note that this indirectly incorporates homophily effects

Prediction methods

- Give a score to each pair of nodes based on how likely they are to form link
- Example scoring strategies:
- Graph distance (shortest path length)
- Number of common neighbors
- Jaccard similarity of neighborhoods
- Preferential attachment
- Random walk (hitting time based methods)
- How soon does a random walk from x hit y ?
- Others

Results

- In reality, many unknown external factors affect links
- So raw accuracy itself is low
- However, we can compare them with baselines like random links
- Most methods perform much better than random links
- Nowell, Kleinberg. Link prediction problem. CIKM 03.

Friendship paradox

- Your friends have more friends than you do!
- Are you less social than others?

Friendship paradox

- The paradox:
- If you ask everyone to report their degrees and take average, you get the average degree
- If you ask everyone to report the average degrees of their friends and take the averages of all,
- you get more than the overall average degree!
- Most of us have some popular friends (hence they are popular)
- If you pick a random friend of a random person, (random edge)
- This friend is relatively likely to be popular, since popular nodes have more edges
- Average degree of nodes:
- A node with degree $d(v)$ contributes $d(v)$ once
- Average degree of a friend:
- Each person picks a friend and counts degree
- A node with degree $d(v)$ contributes $d(v)$ times, with total contribution $\mathrm{d}(\mathrm{v})^{2}$
- A few nodes with relatively high d(v) can skew the count
- https://en.wikipedia.org/wiki/Friendship_paradox
- S. L. Feld, Why your friends have more friends than you do, American journal of sociology, 1991

Identify spouses or romantic partners

Identify spouses or romantic partners

- Tie strengths are important
- Romantic ties tend to be of high strength, more likely to transmit information
- Do you expect romantic links to have high embeddedness (number/fraction of common friends)?
- People have clusters of friend circles
- Work, school, college, hobbies
- Edges in these have high embeddedness, even if they are not strong friends

- Spouses usually know some friends in eachothers different circles
- The edge does not have high embeddedness
- Compared to links in groups such as school/ college

Dispersion

- But, it has a dispersed structure:
- There are several mutual friends, but the mutual friends are not well connected among themselves

Dispersion

- dispersion between u, v
- Notations:
- C(u,v): Common friends of u, v
$-G_{u}$: Subgraph induced by u and all neighbors of u
- $d_{u v}$: distance measured in $G_{u}-\{u, v\}$: Without using u or v

$$
\operatorname{disp}(u, v)=\sum_{s, t \in C(u, v)} d_{u v}(s, t)
$$

Dispersion

$$
\operatorname{disp}(u, v)=\sum_{s, t \in C(u, v)} d_{u v}(s, t)
$$

- Increases with more mutual friends
- Increases when these friends are far in the graph
- It is possible to use other distance measures
- Good results with $d=1$ if no direct edge, 0 otherwise

Normalized dispersion

- Use norm(u,v) $=\operatorname{disp}(u, v) / e m b e d(u, v)$
- 48\% accuracy
- Apply recursively, to weigh higher nodes with high dispersion
- Gives 50.5\% accuracy
- 60\% accuracy for married couples
- High accuracy considering hundreds of friends
- Works better than usual machine learning based on posts, visits, photos etc
- Best results with combination of features
- Backstrom and Kleinberg. Romantic partnerships and dispersion of social ties, ACM CSCW 2014

