Basics and Random Graphs continued

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

- Random graphs on jupyter notebook
- Solution to exercises 1 is out
- If your BSc/MSc/PhD work is related, feel free to discuss relevant project
- Discuss with your supervisor
- Class-only students are also welcome to discuss projects

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
 Edges AB and BC exist
- Then ABC is said to form a Triad
 - Closed triad : Edge AC also exists
 - Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc : average of cc of all nodes
- Global cc : ratio # closed triads # all triads

Global CC in ER graphs

- What happens when p is very small (almost 0)?
- What happens when p is very large (almost 1)?

Global CC in ER graphs

• What happens at the tipping point?

Theorem

• For
$$p = c \frac{\ln n}{n}$$

• Global cc in ER graphs is vanishingly small

$$\lim_{n \to \infty} cc(G) = \lim_{n \to \infty} \frac{\# \text{ closed triads}}{\# \text{ all triads}} = 0$$

- In other words, there is no constant c
 - Such that cc(ER-graph) > c
 - At the tipping point

Avg CC In real networks

- Facebook (old data) ~ 0.6
 - <u>https://snap.stanford.edu/data/egonets-</u> <u>Facebook.html</u>
- Google web graph ~0.5
 - <u>https://snap.stanford.edu/data/web-Google.html</u>
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
 - that the network has significant clustering/ community structure

CC of a graph model

- If we are given a model of graphs
 - Clustering is considered significant if
 - CC is bounded from below by a constant
 - E.g. cc(G) > 0.1
 - Note that cc(G) > 1/n does not help, since this can be very small
- Example problems:
 - What can you say about CC of Trees?
 - Complete graphs?
 - Grids?
 - Grids with diagonals added?

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$d_1, d_2, d_3, \ldots d_n$$

- At each vertex i we *d_i* open-edges
- Pair up the edges randomly
- If all degrees = d
 - Graph is called d-regular

Distances in graphs

- Paths
- Shortest paths
- BFS
- Metrics

Path

- Length of a path or walk is the number of edges it traverses
 - In an unweighted graph
- In a weighted graph (edges have numeric weights)
 - Length or weight of a path is the sum of weights
- In a directed graph

A walk or path must respect the directions

Distance

- Distance between any two nodes in a graph is the length of the shortest path between them
- Diameter of a graph:
 - Distance between the farthest pair of nodes in the graph

Metric

- A distance measure d is a metric if:
 - $-d(x,y) \geq 0$
 - -d(x,y) = 0 iff x=y
 - -d(x,y) = d(y,x)
 - $-d(x,z) \leq d(x,y) + d(y,z)$

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Random graphs: Emergence of giant component

- Suppose N_G is the size of the largest connected component in an ER graph
- How does N_G/N change with p?
- When is N_G/N at least a constant?
 - (giant component: at least a constant fraction of nodes)

Giant component

• When $p = (1-\epsilon)/n$

- W.h.p no GC, components of size O(log n)

• When $p = (1+\epsilon)/n$

– W.h.p GC exists, where $N_G/N \approx \epsilon$

• When p = 1/n

– W.h.p Largest component has size $n^{2/3}$

Ball

- A ball of radius r at vertex v:
 - The set of all nodes within distance r from v
 - The first r layers of a BFS from v
- Usually written as
 - B(v,r) or
 - $B_r(v)$
- In a metric space:
 - The set of all points within distance r of v
- Sphere S_r(v): set of points at distance exactly r from v

Asymptotic notations

- Big O: f(n) = O(g(n))
 - For large enough n,
 - There is a constant c such that $f(n) \le c.g(n)$
- Big Omega: $f(n) = \Omega(g(n))$
 - For large enough n,
 - There is a constant c such that $f(n) \ge c.g(n)$
- Theta : $f(n) = \Theta(g(n))$
 - Both O and Ω

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of S :
 - e^{out}(S): edges with exactly one end-point in S
- Expansion: $\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$

Expansion

$$\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$$

• Equivalently:

$$\alpha = \min_{|S| \le n/2} \frac{|e^{out}(S)|}{|S|}$$

Expanders

• A class of graphs with expansion at least a constant $\alpha > c$

– For some constant c

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

- Random d-regular graphs for d>3
- ER graphs for large enough p

Expanders have small diameter

- A graph with degrees \leq d and expansion $\geq \alpha$
- Has diameter

$$O(\frac{d}{\alpha} \lg n)$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n²)
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

Metric examples

- L₂
- L₁
- L_P
- L_∞
- Grid
- Tree

Metric growth

- Consider the number of nodes in B(v,r)
 - That is, |B(v,r)|
 - How does this grow as a function of r?
- For 2D grid?
- For 3D grid?
- For Balanced binary tree?

Metric examples

- Grid
- Tree
 - Test for tree metric
 - Any 4 points (vertices) can be to satisfy:
 - $d(w,x) + d(y,z) \le d(w,y) + d(x,z) \le d(w,z) + d(x,y)$
 - And d(w,y) + d(x,z) = d(w,z) + d(x,y)

Doubling dimension