Basics and Random Graphs continued

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

- Random graphs on jupyter notebook
- Solution to exercises 1 is out
- If your BSc/MSc/PhD work is related, feel free to discuss relevant project
- Discuss with your supervisor
- Class-only students are also welcome to discuss projects

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
- Edges AB and BC exist
- Then ABC is said to form a Triad
- Closed triad : Edge AC also exists
- Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc : average of cc of all nodes
- Global cc : ratio

$\frac{\text { \# closed triads }}{\# \text { all triads }}$

Global CC in ER graphs

- What happens when p is very small (almost 0)?
- What happens when p is very large (almost 1)?

Global CC in ER graphs

- What happens at the tipping point?

Theorem

- For $p=c \frac{\ln n}{n}$
- Global cc in ER graphs is vanishingly small
$\lim _{n \rightarrow \infty} c c(G)=\lim _{n \rightarrow \infty} \frac{\# \text { closed triads }}{\# \text { all triads }}=0$
- In other words, there is no constant c
- Such that cc(ER-graph) > c
- At the tipping point

Avg CC In real networks

- Facebook (old data) ~ 0.6
- https://snap.stanford.edu/data/egonetsFacebook.html
- Google web graph ~0.5
- https://snap.stanford.edu/data/web-Google.html
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
- that the network has significant clustering/ community structure

CC of a graph model

- If we are given a model of graphs
- Clustering is considered significant if
- CC is bounded from below by a constant
- E.g. cc(G) > 0.1
- Note that $\mathrm{cc}(\mathrm{G})>1 / \mathrm{n}$ does not help, since this can be very small
- Example problems:
- What can you say about CC of Trees?
- Complete graphs?
- Grids?
- Grids with diagonals added?

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$
d_{1}, d_{2}, d_{3}, \ldots d_{n}
$$

- At each vertex i we d_{i} open-edges
- Pair up the edges randomly
- If all degrees = d
- Graph is called d-regular

Distances in graphs

- Paths
- Shortest paths
- BFS
- Metrics

Path

- Length of a path or walk is the number of edges it traverses
- In an unweighted graph
- In a weighted graph (edges have numeric weights)
- Length or weight of a path is the sum of weights
- In a directed graph
- A walk or path must respect the directions

Distance

- Distance between any two nodes in a graph is the length of the shortest path between them
- Diameter of a graph:
- Distance between the farthest pair of nodes in the graph

Metric

- A distance measure d is a metric if:
$-d(x, y) \geq 0$
$-d(x, y)=0$ iff $x=y$
$-d(x, y)=d(y, x)$
$-d(x, z) \leq d(x, y)+d(y, z)$

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Random graphs: Emergence of giant component

- Suppose N_{G} is the size of the largest connected component in an ER graph
- How does N_{G} / N change with p ?
- When is $\mathrm{N}_{\mathrm{G}} / \mathrm{N}$ at least a constant?
- (giant component: at least a constant fraction of nodes)

Giant component

- When $p=(1-\varepsilon) / n$
- W.h.p no GC, components of size O(log n)
- When $p=(1+\varepsilon) / n$
- W.h.p GC exists, where $N_{G} / \mathrm{N} \sim \varepsilon$
- When $p=1 / n$
- W.h.p Largest component has size $\mathrm{n}^{2 / 3}$

Ball

- A ball of radius r at vertex v :
- The set of all nodes within distance r from v
- The first r layers of a BFS from v
- Usually written as
- $B(v, r)$ or
$-B_{r}(v)$
- In a metric space:
- The set of all points within distance r of v
- Sphere $S_{r}(v)$: set of points at distance exactly r from v

Asymptotic notations

- Big $\mathrm{O}: \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- For large enough n,
- There is a constant c such that $f(n) \leq c . g(n)$
- Big Omega: $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$
- For large enough n,
- There is a constant c such that $f(n) \geq c . g(n)$
- Theta : $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- Both O and Ω

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of S :
- $\mathrm{e}^{\text {out }}(\mathrm{S})$: edges with exactly one end-point in S
- Expansion:

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

Expansion

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

- Equivalently:

$$
\alpha=\min _{|S| \leq n / 2} \frac{\left|e^{\text {out }}(S)\right|}{|S|}
$$

Expanders

- A class of graphs with expansion at least a constant

$$
\alpha \geq c
$$

- For some constant c

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

- Random d-regular graphs for d>3
- ER graphs for large enough p

Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

$$
O\left(\frac{d}{\alpha} \lg n\right)
$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n^{2})
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

Metric examples

- L_{2}
- L_{1}
- L_{p}
- L_{∞}
- Grid
- Tree

Metric growth

- Consider the number of nodes in $B(v, r)$
- That is, $|B(v, r)|$
- How does this grow as a function of r ?
- For 2D grid?
- For 3D grid?
- For Balanced binary tree?

Metric examples

- Grid
- Tree
- Test for tree metric
- Any 4 points (vertices) can be
 to satisfy:
- $\mathrm{d}(\mathrm{w}, \mathrm{x})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \leq \mathrm{d}(\mathrm{w}, \mathrm{y})+\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{w}, \mathrm{z})+\mathrm{d}(\mathrm{x}, \mathrm{y})$
- And $d(w, y)+d(x, z)=d(w, z)+d(x, y)$

Doubling dimension

