Basics and Random Graphs

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.
Webpage

- Check it regularly
- Announcements
- Lecture slides, reading material
- Do exercises 1.
Today

• Some basics of graph theory
 – Wikipedia is a good resource for basics
• Typical types of graphs & networks
• What are random graphs?
 – How can we define “random graphs”?
• Some properties of random graphs
Graph

- V: set of nodes
- $n = |V|$: Number of nodes

- E: set of edges
- $m = |E|$: Number of edges

- If edge a-b exists, then a and b are called neighbors.
Walks

- A sequence of vertices v_1, v_2, v_3, \ldots
- Where successive vertices are neighbors
 $$v_i, v_{i+1}, (v_i, v_{i+1}) \in E$$
Paths

• Walks without any repeated vertex
Exercises

• At most how many walks there can be on a graph?

• At most how many paths can there be on a graph?
Cycle

• A walk with the same start and end vertex
Subgraph of G

• A graph H with a subset of vertices and edges of G
 – Of course, for any edge (a,b) in H, vertices a and b must also be in H

• Subgraph induced by a subset of vertices $X \subseteq V$
 – Graph with vertices X and edges between nodes in X
Connected component

• A subgraph where
 – Any two vertices are connected by a path

• A connected graph
 – Only 1 connected component
Graph

• How many edges can a graph have?
Graph

• How many edges can a graph have?

\(\binom{n}{2} \) OR \(\frac{n(n - 1)}{2} \)

• In big O?
Graph

• How many edges can a graph have?

\[
\binom{n}{2} \quad \text{OR} \quad \frac{n(n - 1)}{2}
\]

\[O(n^2)\]
Some typical graphs

- Complete graph
 - All possible edges exist

- Tree graphs
 - Connected graphs
 - Do not contain cycles
Typical graphs

• Star graphs

• Bipartite graphs
 – Vertices in 2 partitions
 – No edge in the same partition
Typical graphs

• Grids (finite)
 – 1D grid (or chain, or path)
 – 2D grid
 – 3D grid
Random graphs

• Most basic, most unstructured graphs
• Forms a baseline
 – What happens in absence of any influences
 • Social and technological forces
• Many real networks have a random component
 – Many things happen without clear reason
Erdos – Renyi Random graphs
Erdos – Renyi Random graphs

\(G(n, p) \)

- \(n \): number of vertices
- \(p \): probability that any particular edge exists

- Take \(V \) with \(n \) vertices
- Consider each possible edge. Add it to \(E \) with probability \(p \)
Expected number of edges

• Expected total number of edges

• Expected number of edges at any vertex
Expected number of edges

- Expected total number of edges $\binom{n}{2} p$
- Expected number of edges at any vertex $(n - 1) p$
Expected number of edges

• For \(p = \frac{c}{n - 1} \)

• The expected degree of a node is : ?
Isolated vertices

• How likely is it that the graph has isolated vertices?
Isolated vertices

• How likely is it that the graph has isolated vertices?

• What happens to the number of isolated vertices as p increases?
Probability of Isolated vertices

- Isolated vertices are

- Likely when: \(p < \frac{\ln n}{n} \)

- Unlikely when: \(p > \frac{\ln n}{n} \)

- Let’s deduce
Useful inequalities

\[
\left(1 + \frac{1}{x}\right)^x \leq e
\]

\[
\left(1 - \frac{1}{x}\right)^x \leq \frac{1}{e}
\]
Union bound

• For events A, B, C ...

• \(\Pr[A \text{ or } B \text{ or } C \ldots] \leq \Pr[A] + \Pr[B] + \Pr[C] + \ldots \)
• Theorem 1:

 If \(p = \left(1 + \epsilon\right) \frac{\ln n}{n - 1} \)

 Then the probability that there exists an isolated vertex
 \[\leq \frac{1}{n^\epsilon} \]
Terminology of high probability

- Something happens with high probability if

\[\Pr[\text{event}] \geq \left(1 - \frac{1}{\text{poly}(n)} \right) \]

- Where \(\text{poly}(n) \) means a polynomial in \(n \)
- A polynomial in \(n \) is considered reasonably ‘large’
 – Whereas something like \(\log n \) is considered ‘small’

- Thus for large \(n \), w.h.p there is no isolated vertex
- Expected number of isolated vertices is miniscule
• **Theorem 2**

• For \(p = (1 - \epsilon) \frac{\ln n}{n - 1} \)

• Probability that vertex \(v \) is isolated \(\geq \frac{1}{(2n)^{1-\epsilon}} \)
• Theorem 2
• For \(p = (1 - \epsilon) \frac{\ln n}{n - 1} \)

• Probability that vertex \(v \) is isolated \(\geq \frac{1}{(2n)^{1-\epsilon}} \)

• Expected number of isolated vertices:
 \[\geq \frac{n}{(2n)^{1-\epsilon}} = \frac{n^\epsilon}{2} \]

 Polynomial in \(n \)
Threshold phenomenon: Probability or number of isolated vertices

- The tipping point, phase transition

- Common in many real systems
Clustering in social networks

• People with mutual friends are often friends

• If A and C have a common friend B
 – Edges AB and BC exist

• Then ABC is said to form a *Triad*
 – Closed triad: Edge AC also exists
 – Open triad: Edge AC does not exist

• Exercise: Prove that any connected graph has at least n triads (considering both open and closed).
Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- \(cc(A) \) fractions of pairs of A’s neighbors that are friends
- Average cc: average of cc of all nodes
- Global cc: ratio \[\frac{\text{# closed triads}}{\text{# all triads}} \]
Global CC in ER graphs

• What happens when p is very small (almost 0)?

• What happens when p is very large (almost 1)?
Global CC in ER graphs

• What happens at the tipping point?
Theorem

• For \(p = c \frac{\ln n}{n} \)

• Global cc in ER graphs is vanishingly small

\[
\lim_{n \to \infty} cc(G) = \lim_{n \to \infty} \frac{\# \text{ closed triads}}{\# \text{ all triads}} = 0
\]
Avg CC In real networks

• Facebook (old data) ~ 0.6
 • https://snap.stanford.edu/data/egonets-Facebook.html

• Google web graph ~0.5
 • https://snap.stanford.edu/data/web-Google.html

• In general, cc of ~ 0.2 or 0.3 is considered ‘high’
 – that the network has significant clustering/community structure