Metrics: Growth, dimension, expansion

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

Metric

- A distance measure d is a metric if:
$-d(u, v) \geq 0$
$-d(u, v)=0$ iff $u=v$
$-d(u, v)=d(u, v)$
$-d(u, v) \leq d(u, v)+d(u, v)$

Metrics

- Metrics are Important because:
- Metrics are used to construct networks
- Networks have metrics that determine their properties
- Today:
- Finding metric distances in data
- Properties of some typical metrics

Graph Embedding

- Map the vertices V to points in the plane
- (or some other space)
- Usually, different vertices are mapped to different points

Different distances

- What is the distance between u and v ?
- Possibility 1 (Embedding or extrinsic distance):
- Distance in the embedded space
- E.g. Euclidean distance
- Possibility 2 (Intrinsic distance):

- Distance in the graph
- The length of shortest path
- Possibility 3 (Intrinsic distance):
- Weighted distance in the graph
- Weight of least weight path

Where do metrics come from?

- Possibility 1 :
- Vertex locations are given. Eg. Mobile phone locations
- Possibility 2 :
- We are given real valued features like age, salary, etc
- We can use these as dimensions and compute distances.

Computing distances for categorical data

- Suppose we are given categorical data
- E.g.
- We are given list of clubs people belong to
- Or list of songs they like etc..
- Cosine distance
- Represent the list as 0-1 vectors A, B, \ldots
- Find cosine similarity $S_{c}=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_{2}\|\mathbf{B}\|_{2}}$
- Cosine distance $d_{c}=1-S_{c}$

Computing distances for categorical data

- Jaccard similarity:
- Treat the vectors as sets A, B..
- And compute $J(A, B)=\frac{|A \cap B|}{|A \cup B|}$
- Distance $J_{d}=1-J$

Computing distances for categorical data

- Min category distance
- Take the size of the smallest club with both A and B as the distance
- You can come up with many other ways of computing distance

Euclidean metric

- 1-D
- Straight line (think x-axis)
- 2-D
- Plane
- Distance measure in dimension d:
$d(u, v)=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{d}-v_{d}\right)^{2}}$

Non Euclidean metrics

- A lot of maths for Euclidean metrics
- What are examples of non-Euclidean metrics?

Non-euclidean metrics

Hyperbolic plane Negative curvature

Realistic shapes. With bends, and cycles.

- L_{p} metrics

$$
d(u, v)=\sqrt[p]{\left(u_{1}-v_{1}\right)^{p}+\left(u_{2}-v_{2}\right)^{p}+\cdots+\left(u_{d}-v_{d}\right)^{p}}
$$

L_{1} metric

- Manhattan distances

$$
d(u, v)=\left|u_{x}-v_{x}\right|+\left|u_{y}-v_{y}\right|
$$

L_{∞} Metric

- Largest component over dimensions

$$
\begin{aligned}
& d(u, v)=\lim _{p \rightarrow \infty} \sqrt[p]{\left(u_{x}-v_{x}\right)^{p}+\left(u_{y}-v_{y}\right)^{p}} \\
& d(u, v)=\max \left(\left|u_{x}-v_{x}\right|,\left|u_{y}-v_{y}\right|\right)
\end{aligned}
$$

Disks and circles in L_{p} metrics

Ball

- A ball of radius r at point v :
- The set of all points within distance r from v
- Called a disk in 2D
- Usually written as
- B(v,r) or
$-B_{r}(v)$
- Sphere $S_{r}(v)$: set of points at distance exactly r from v
- The boundary of the ball
- 1-D sphere: boundary of a 2-D ball
- 2-D sphere: boundary of a 3-D ball etc

Size of a ball

- The "measure" in a suitable dimension
- Area in 2D
- Volume in 3D etc
- What about 1D?

- What is the measure of a sphere?
- 1D?
$-2 D$?

Growth of a metric

- How does the size of a ball $B(v, r)$ grow with radius?
- In 1D?
- In 2D?
- In 3D?

Growth of Euclidean metric

- D-dim

$$
\Theta\left(r^{d}\right)
$$

Growth can be used to detect dimension

- E.g. Long strips
- Growth is linear: $O(r)$
- Compared to size, this is 1-D

Making networks from metrics

- Unit disk graphs
- Consider vertices in the plane (like wireless nodes)
- Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)
- Applies generally to higher dim (Unit ball graphs)
- Connect two nodes if they are within a given distance

Making networks from metrics

- Unit disk graphs
- Consider vertices in the plane (like wireless nodes)
- Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)
- Applies generally to higher dim (Unit ball graphs)
- Connect two nodes if they are within a given distance

k-NN graphs

- For each vertex, fine k nearest neighbors
- Connect edges to all k nearest neighbors
- Variants:
- Connect all k-NN edges
- Connect only if both vertices are k-NN of each-other

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball $B(v, r)$ in a graph

- The set of nodes within distance r of v
- Sphere: Nodes at distance exactly r
- Measure or volume:
- The number of nodes in $B(v, r)$
- Growth
- How does $|B(v, r)|$ grow with r
- For Chain?
- Cycle?
- Grid?
- Balanced binary tree?

Growth in chain graph

- When the graph is a chain. What happens when we use
- Extrinsic metric Euclidean L_{2}
- Extrinsic metric L_{1}
- Extrinsic metric L_{∞}
- When we use the intrinsic graph metric

Growth in chain graph

- When the graph is a chain. What happens when we use
- Extrinsic metric Euclidean L_{2}
- Extrinsic metric L_{1}
- Extrinsic metric L_{∞}
- When we use the intrinsic graph metric
- When the chain is embedded differently?

Growth in Cycle

Growth in 2D grid

Growth for balanced binary trees

Growth for balanced binary trees

Growth for balanced binary trees

What are the diameters of these graphs

- Finite chain
- Finite Grid
- Balanced binary tree
- Intrinsic metric
- Extrinsic metric

How does the sphere grow?

- For chain
- Grid
- Balanced binary tree
- Intrinsic metric
- Extrinsic metric

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of S :
- $\mathrm{e}^{\text {out }}(\mathrm{S})$: edges with exactly one end-point in S
- Expansion:

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

Expansion

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

- Equivalently:

$$
\alpha=\min _{|S| \leq n / 2} \frac{\left|e^{\text {out }}(S)\right|}{|S|}
$$

Expanders

- A class of graphs with expansion at least a constant

$$
\alpha \geq c
$$

- For some constant c

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

- Random d-regular graphs for d>3
- ER graphs for large enough p

Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

$$
O\left(\frac{d}{\alpha} \lg n\right)
$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n^{2})
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)
- Do exercise 2.
- Ex 3 to be given out soon
- Study the material up to now. This will important later.

Project

- Suggested list to be announced Monday/Tuesday
- On Email and Piazza
- 4 days to select project
- You can work in groups of 1,2 or 3
- But Must submit individual reports
- The group is for discussion and possibly some common tasks. But marking is individual
- A short (half page to 1 page) proposal due around October 27.
- Not graded. Feedback only
- Final report due around Nov 15.

