Metrics: Growth, dimension, expansion

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.
Metric

• A distance measure \(d \) is a metric if:

 - \(d(u,v) \geq 0 \)

 - \(d(u,v) = 0 \) iff \(u = v \)

 - \(d(u,v) = d(v,u) \)

 - \(d(u,v) \leq d(u,w) + d(w,v) \)
Metrics

• Metrics are Important because:
 – Metrics are used to construct networks
 – Networks have metrics that determine their properties

• Today:
 – Finding metric distances in data
 – Properties of some typical metrics
Graph Embedding

- Map the vertices V to points in the plane
 - (or some other space)

- Usually, different vertices are mapped to different points
Different distances

• What is the distance between u and v?
• Possibility 1 (Embedding or extrinsic distance):
 – Distance in the embedded space
 • E.g. Euclidean distance
• Possibility 2 (Intrinsic distance):
 – Distance in the graph
 • The length of shortest path
• Possibility 3 (Intrinsic distance):
 – Weighted distance in the graph
 • Weight of least weight path
Where do metrics come from?

• Possibility 1:
 – Vertex locations are given. Eg. Mobile phone locations

• Possibility 2:
 – We are given real valued features like age, salary, etc
 – We can use these as dimensions and compute distances.
Computing distances for categorical data

• Suppose we are given categorical data
• E.g.
 – We are given list of clubs people belong to
 – Or list of songs they like etc..
• Cosine distance
 – Represent the list as 0-1 vectors \(A, B, \ldots \)
 – Find cosine similarity \(S_c = \frac{A \cdot B}{\|A\|_2 \|B\|_2} \)
 – Cosine distance \(d_c = 1 - S_c \)
Computing distances for categorical data

• Jaccard similarity:
 — Treat the vectors as sets A, B..
 — And compute
 \[J(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

 — Distance \(J_d = 1 - J \)
Computing distances for categorical data

• Min category distance
 – Take the size of the smallest club with both A and B as the distance

• You can come up with many other ways of computing distance
Euclidean metric

• 1-D
 – Straight line (think x-axis)

• 2-D
 – Plane

• Distance measure in dimension d:

\[d(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_d - v_d)^2} \]
Non Euclidean metrics

• A lot of maths for Euclidean metrics

• What are examples of non-Euclidean metrics?
Non-euclidean metrics

- Sphere
 Positive curvature

- Hyperbolic plane
 Negative curvature

Realistic shapes. With bends, and cycles.
• **L_p metrics**

\[d(u, v) = \sqrt[p]{(u_1 - v_1)^p + (u_2 - v_2)^p + \cdots + (u_d - v_d)^p} \]
L₁ metric

- Manhattan distances

\[d(u, v) = |u_x - v_x| + |u_y - v_y| \]
L_∞ Metric

- Largest component over dimensions

\[d(u, v) = \lim_{p \to \infty} \sqrt[p]{(u_x - v_x)^p + (u_y - v_y)^p} \]

\[d(u, v) = \max(|u_x - v_x|, |u_y - v_y|) \]
Disks and circles in L_p metrics

- $\|x\|_1$
- $\|x\|_2$
- $\|x\|_\infty$
Ball

• A ball of radius r at point v:
 – The set of all points within distance r from v
 – Called a disk in 2D

• Usually written as
 – $B(v, r)$ or
 – $B_r(v)$

• Sphere $S_r(v)$: set of points at distance exactly r from v
 – The boundary of the ball
 – 1-D sphere: boundary of a 2-D ball
 – 2-D sphere: boundary of a 3-D ball etc
Size of a ball

• The “measure” in a suitable dimension
 – Area in 2D
 – Volume in 3D etc
 – What about 1D?

• What is the measure of a sphere?
 – 1D?
 – 2D?
Growth of a metric

• How does the size of a ball $B(v, r)$ grow with radius?
 • In 1D?
 • In 2D?
 • In 3D?
Growth of Euclidean metric

• D-dim

\[\Theta \left(r^d \right) \]
Growth can be used to detect dimension

• E.g. Long strips

 – Growth is linear: $O(r)$
 – Compared to size, this is 1-D
Making networks from metrics

- Unit disk graphs
 - Consider vertices in the plane (like wireless nodes)
 - Connect two vertices by an edge if they are within distance 1 of each other. (within transmission distance)
 - Applies generally to higher dim (Unit ball graphs)
 - Connect two nodes if they are within a given distance
Making networks from metrics

• Unit disk graphs
 – Consider vertices in the plane (like wireless nodes)
 – Connect two vertices by an edge if they are within distance 1 of each other. (within transmission distance)
 – Applies generally to higher dim (Unit ball graphs)
 – Connect two nodes if they are within a given distance
k-NN graphs

• For each vertex, find k nearest neighbors
 – Connect edges to all k nearest neighbors
 – Variants:
 • Connect all k-NN edges
 • Connect only if both vertices are k-NN of each other
The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers
Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra’s shortest path algorithm
Ball $B(v, r)$ in a graph

- The set of nodes within distance r of v
 - Sphere: Nodes at distance exactly r
- Measure or volume:
 - The number of nodes in $B(v, r)$
- Growth
 - How does $|B(v, r)|$ grow with r
 - For Chain?
 - Cycle?
 - Grid?
 - Balanced binary tree?
Edge Expansion

• How fast the ‘boundary’ expands relative to ‘volume’ or ‘size’ of a subset

• Boundary of S:
 – $e^{\text{out}}(S)$: edges with exactly one end-point in S

• Expansion:

$$\alpha = \min_{S \subseteq V} \frac{|e^{\text{out}}(S)|}{\min(|S|, |\overline{S}|)}$$
Expansion

$$\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\bar{S}|)}$$

• Equivalently:

$$\alpha = \min_{|S| \leq n/2} \frac{|e^{out}(S)|}{|S|}$$
Expanders

• A class of graphs with expansion at least a constant
 \[\alpha \geq c \]

 – For some constant \(c \)
Are the following graphs expanders?

• A chain
• A balanced binary tree
• A grid
Examples of expanders

• Random d-regular graphs for $d > 3$

• ER graphs for large enough p
Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

$$O\left(\frac{d}{\alpha} \log n\right)$$
Other properties

• Expanders are well connected
• Usually sparse (number of edges much smaller than n^2)
• Diffusion processes spread fast in an expander
• Random walks mix fast (achieve steady state)
• ...
Doubling dimension