Metrics: Growth, dimension, expansion

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

Metric

- A distance measure d is a metric if:
 - $-d(u,v) \ge 0$
 - -d(u,v) = 0 iff u=v
 - -d(u,v) = d(u,v)
 - $-d(u,v) \leq d(u,v) + d(u,v)$

Metrics

- Metrics are Important because:
 - Metrics are used to construct networks
 - Networks have metrics that determine their properties
- Today:
 - Finding metric distances in data
 - Properties of some typical metrics

Graph Embedding

- Map the vertices V to points in the plane
 - (or some other space)
- Usually, different vertices are mapped to different points

Different distances

- What is the distance between u and v?
- Possibility 1 (Embedding or extrinsic distance):
 - Distance in the embedded space
 - E.g. Euclidean distance
- Possibility 2 (Intrinsic distance):
 - Distance in the graph
 - The length of shortest path
- Possibility 3 (Intrinsic distance):
 - Weighted distance in the graph
 - Weight of least weight path

Where do metrics come from?

- Possibility 1:
 - Vertex locations are given. Eg. Mobile phone locations
- Possibility 2:
 - We are given real valued features like age, salary, etc
 - We can use these as dimensions and compute distances.

Computing distances for categorical data

- Suppose we are given categorical data
- E.g.
 - We are given list of clubs people belong to
 - Or list of songs they like etc..
- Cosine distance
 - Represent the list as 0-1 vectors A, B, ...
 - Find cosine similarity $S_c = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$

- Cosine distance $d_c = 1 - S_c$

Computing distances for categorical data

• Jaccard similarity:

- Treat the vectors as sets A, B..

– And compute
$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$
 :

Computing distances for categorical data

- Min category distance
 - Take the size of the smallest club with both A and B as the distance
- You can come up with many other ways of computing distance

Euclidean metric

• 1-D

- Straight line (think x-axis)

- 2-D
 - Plane

• Distance measure in dimension d:

 $d(u,v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_d - v_d)^2}$

Non Euclidean metrics

- A lot of maths for Euclidean metrics
- What are examples of non-Euclidean metrics?

Non-euclidean metrics

Realistic shapes. With bends, and cycles.

• L_p metrics $d(u,v) = \sqrt[p]{(u_1 - v_1)^p + (u_2 - v_2)^p + \dots + (u_d - v_d)^p}$

L₁ metric

• Manhattan distances

$$d(u, v) = |u_x - v_x| + |u_y - v_y|$$

L_{∞} Metric

• Largest component over dimensions

$$d(u,v) = \lim_{p \to \infty} \sqrt[p]{(u_x - v_x)^p} + (u_y - v_y)^p$$

$$d(u, v) = \max(|u_x - v_x|, |u_y - v_y|)$$

Disks and circles in L_pmetrics

Ball

- A ball of radius r at point v:
 - The set of all points within distance r from v
 - Called a disk in 2D
- Usually written as
 - B(v,r) or
 - $B_r(v)$

- Sphere S_r(v): set of points at distance exactly r from v
 - The boundary of the ball
 - 1-D sphere: boundary of a 2-D ball
 - 2-D sphere: boundary of a 3-D ball etc

Size of a ball

- The "measure" in a suitable dimension
 - Area in 2D
 - Volume in 3D etc
 - What about 1D?

- What is the measure of a sphere?
 - 1D?
 - 2D?

Growth of a metric

- How does the size of a ball B(v,r) grow with radius?
- In 1D?
- In 2D?
- In 3D?

Growth of Euclidean metric

• D-dim

 $\Theta(r^d)$

Growth can be used to detect dimension

• E.g. Long strips

- Growth is linear: O(r)

- Compared to size, this is 1-D

Making networks from metrics

- Unit disk graphs
 - Consider vertices in the plane (like wireless nodes)
 - Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)
 - Applies generally to higher dim (Unit ball graphs)
 - Connect two nodes if they are within a given distance

Making networks from metrics

- Unit disk graphs
 - Consider vertices in the plane (like wireless nodes)
 - Connect two vertices by an edge if they are within distance 1 of eachother. (within transmission distance)
 - Applies generally to higher dim (Unit ball graphs)
 - Connect two nodes if they are within a given distance

k-NN graphs

- For each vertex, fine k nearest neighbors
 - Connect edges to all k nearest neighbors
 - Variants:
 - Connect all k-NN edges
 - Connect only if both vertices are k-NN of each-other

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball B(v,r) in a graph

- The set of nodes within distance r of v
 - Sphere: Nodes at distance exactly r
- Measure or volume:
 - The number of nodes in B(v, r)
- Growth
 - How does |B(v, r)| grow with r
 - For Chain?
 - Cycle?
 - Grid?
 - Balanced binary tree?

Growth in chain graph

- When the graph is a chain. What happens when we use
 - Extrinsic metric Euclidean L₂
 - Extrinsic metric L₁
 - Extrinsic metric L_{∞}
 - When we use the intrinsic graph metric

Growth in chain graph

- When the graph is a chain. What happens when we use
 - Extrinsic metric Euclidean L₂
 - Extrinsic metric L₁
 - Extrinsic metric L_{∞}
 - When we use the intrinsic graph metric
 - When the chain is embedded differently?

Growth in Cycle

Growth in 2D grid

Growth for balanced binary trees

Height h

Growth for balanced binary trees

n=2^h

Growth for balanced binary trees

growth≈Θ(2^h)

What are the diameters of these graphs

- Finite chain
- Finite Grid
- Balanced binary tree
- Intrinsic metric
- Extrinsic metric

How does the sphere grow?

- For chain
- Grid
- Balanced binary tree
- Intrinsic metric
- Extrinsic metric

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' or 'size' of a subset
- Boundary of S :
 - e^{out}(S): edges with exactly one end-point in S
- Expansion: $\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$

Expansion

$$\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$$

• Equivalently:

$$\alpha = \min_{|S| \le n/2} \frac{|e^{out}(S)|}{|S|}$$

Expanders

- A class of graphs with expansion at least a constant $\alpha > c$

 $\alpha \ge c$

For some constant c

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

- Random d-regular graphs for d>3
- ER graphs for large enough p

Expanders have small diameter

- A graph with degrees \leq d and expansion $\geq \alpha$
- Has diameter

$$O(\frac{d}{\alpha} \lg n)$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n²)
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

- Do exercise 2.
- Ex 3 to be given out soon
- Study the material up to now. This will important later.

Project

- Suggested list to be announced Monday/Tuesday

 On Email and Piazza
- 4 days to select project
 - You can work in groups of 1,2 or 3
 - But Must submit individual reports
 - The group is for discussion and possibly some common tasks. But marking is individual
- A short (half page to 1 page) proposal due around October 27.

Not graded. Feedback only

• Final report due around Nov 15.