Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.
Course specifics

• Lectures
 – Tuesdays 12:10 – 13:00
 • 7 Bristo Square, Lecture Theatre 2
 – Fridays 12:10 – 13:00
 • 1 George Square, G.8 Gaddum LT

• Web page
 – http://www.inf.ed.ac.uk/teaching/courses/stn/

• Lookout for announcements on the web page
Network

• A set of entities or nodes: \(V \)
• A set of edges: \(E \)
 – Each edge \(e = (a, b) \) for nodes \(a, b \) in \(V \)
 – An edge \((a,b) \) represents existence of a relation or a \textit{link} between \(a \) and \(b \)
Networks are everywhere

• There exist different relations between components in a system
 – There is a network
• Properties of the network determine properties of the system
• Analysis of data from the system must take the network into consideration.
Example: Social networks

- Facebook, Linkedin, twitter...
- Nodes are people
- Edges are friendships

- The network determines society, communities, etc..
- How information flows in the society
- How innovation/influence spreads
- Who are the influential people
- Predict behaviour
World wide web

- Links/edges between web pages
- Determines availability of information
- Important pages have more links pointing to them
- Network analysis is the basis of search engines
Computer networks

• What can we say about the internet?
• How reliable are computer networks?
Electricity grid

• Network of many nodes, redistributing power
• Critical infrastructure
• Failure can disrupt ... everything
• Small local failures can spread
 – Load redistributes
 – Trigger a cascade of failures
• Network structure is critical

From Barabasi: Network Science
Road network and transportation

- Mobility patterns of people
 - Location data
- Failure cascades
- Traffic needs
- Suggest bus routes
- Suggest travel plans
- Traffic engineering
- Increasing importance
 - More vehicles
 - Self driving cars
Linguistic networks

• Networks of words
• Show similarities between languages
• Show differences between languages
• Document analysis
Business and management and marketing

• Business
 – What makes a restaurant successful?
 – Nearby restaurants?
 Community of customers?

• Marketing/management
 – Who are the influential people in spread of ideas/products?
Other networks

• Chemistry/biology
 – Interactions between chemicals
 – Interactions between species
 – Ecological networks

• Finance/economies
 – Dependencies between institutions
 – Resilience and fragility

• Neural (Brain) networks
Why Network science? Why Now?

• Many of these systems have similar underlying characteristics
• Network science studies these general properties
• We now have many tools: algorithms, graph theory, optimization...
• Last decade or so a lot of network-type data has become available
 – www – search engines etc
 – Location data: traffic and road data
• We can now look at this data and search for theories
Network analysis in data science

• Data getting more complex
• Many types of data are not points in R^d space
 – Data carry relations – networks
 – Simple classification inadequate
 – Network knowledge can make ML more accurate, efficient
 – E.g. data from social network or social media, www, IoT and sensor networks
Network analysis in data science

- Networks reflect the *shape* of data
- Connect nearby points with edges
- Analyse resultant network
Topics of study

• Random graphs: the most basic, unstructured simple networks
 – What are their properties? What can we expect?
 – Erdos renyi graphs
 – Construction of random graphs

• Power law and scale free networks
 – Distribution of degrees of nodes
 – Power law occurs in many places: www, social nets etc..
 – What is the process that generates this? How do we know that it is the right process?

• Metrics and distance measures in networks
 – Basis of classification, clustering, route planning etc
Topics of study

• Small world networks
 – Milgram’s experiment
 – What is the deal with six degrees of separation
 – How are people so well connected?

• Web graphs and ranking of web pages
 – Google’s origins and pagerank
 – How do you identify important web pages?
 – Analysis of the algorithm: do they converge? Can they give a clear answer?

• Spectral methods
Topics of study

• Strong and weak ties in social networks, social capital
 – How does information spread in a social network?
 – How do you make use of your position in a network?
 – Which contacts are useful in finding jobs? Why?

• What are the communities (close knit groups)?
 – How do communities affect social processes?
 – Clustering/unsupervised learning
Topics of study

- Cascades – things that spread
 - Node failures
 - Epidemics, diseases
 - Innovation – products, ideas, technologies
- How can we maximize a spread?
 - Who are the most influential nodes?
 - How can we identify them?
 - Submodular optimization
Topics of study

• Shape of networks
 – What is the shape of internet?
 – What are bow tie and tree-like networks?
 – What does it mean to say a network is tree-like?
The course

• Is not about:
 – Facebook, Whatsapp, Linkedin, Twitter...
 – Making apps
The course

• Is about:
 – Understanding mathematical measures that define properties of networks
 – Mathematics and algorithms to compute and analyze these properties

• Is not machine learning
 – But related to it
Our approach

• Clearly define different aspects of networks
 – What is a random graph?
 – What exactly is a small world?
 – How do you define ‘community’ or clustering in networks?
 – How do you define influential nodes?

• Design algorithms to analyze networks
 – Find communities, find influential nodes
 – Understand the properties of these algorithms
 – When do they work, when do they not work
 • Why?
Our approach

• Test ideas on real and artificial networks
 – Data driven understanding
 – Do real networks have the properties predicted by theory?
 – Do the algorithms work as well as expected?
Project

- 1 project. 40% of marks
- Given: Around Oct 5 to 10.
- Due: Around Nov 15.
- Choose from one of several projects
- **Objective: Try something new in network science.**
- Given problem statement, try your own ideas on how to solve it
 - No unique solution.
- We will give you a topic. You have to
 - Formulate it as a precise network problem
 - Find a way to solve it
 - You are allowed to try different problems and approaches
- Submit code and ≈3 page report
- Marked on originality, rigor of work (proper analysis/experiments), clarity of presentation
Possible types of projects

• Given a dataset from a particular social/technological area, find a way to solve a particular problem
 – Devise a prediction method
 – Find interesting properties of specific networks
 – Design of efficient algorithms to compute network properties

• Programming is useful for evaluation/experiments
 – We will use python in class (recommended)
 – You can use other languages (python, java, c, c++)

• Theoretical work is also great. But must have analytical approach such as proofs
Theory Exam

• Standard exam, 60% of marks
• Explain phenomena, devise mechanisms, prove properties...
• Last year’s paper online..
Lectures

• Slides will be uploaded after each class
• Lecture notes will be given covering some material left over
• Exercise problems will be given covering important material
• Ipython (jupyter) notebooks will be uploaded
• Do the exercise problems to make sure
 – You understand things
 – You can solve analytic problems
• Solutions will be given later for important problems
 – Check that your solution is right
 – Check that your writing is sufficiently precise
Pre-requisites

• Probability, distributions, set theory
• Basic graph theory and algorithms
 – Graphs, trees, DFS, BFS, minimum spanning trees, sorting
• Asymptotic notations: Big O.
• Linear algebra
 • Matrix operations
 • (preferably) Eigen vectors and eigen values
• Sample problems online

• Take notes in class. Not everything is on slides!
Course learning expectations

• Formulate problems
• Plan and execute original projects
• Use programming to analyze network data
• Use theoretical analysis (maths) to understand ideas/models
• Present analysis and ideas
 – Precisely
 – Unambiguously
 – Clearly

• Have fun playing with ideas!