
Spectral	Graph	Theory	
	

Social	and	Technological	Networks	

Rik	Sarkar	
	

University	of	Edinburgh,	2017.	



Project	

•  Proposal	feedback	today/tomorrow	
– Please	share	with	your	teammates!	

•  Project	guidelines	and	Ips	are	up	on	the	web	
page	



Project	-	teams	

•  Brainstorm	in	teams.	Submit	your	own	project	
•  The	team	is	to	help	you	think	about	the	
project,	discuss	specific	issues	

•  Treat	your	teammate’s	project	as	any	other	
book	or	paper	–	you	can	reference/use	it,	but	
cannot	claim	credit!	

•  You	are	free	to	discuss	with	anybody.	Give	
credit	for	significant	ideas.		



Project	--	wriIng	

•  Do	not	keep	it	for	the	end!	
•  As	you	go,	put	in	plots,	pictures,	diagrams	in	the	
document.	You	can	change/remove	them	later	

•  Put	in	small	paragraphs,	descripIons	as	they	
occur	to	you	–	you	will	not	remember	this	on	the	
last	day.	

•  Remember	the	thoughts,	discussions,	problems,	
ideas	as	you	go	along.	This	will	help	you	to	write	
an	interesIng	report.		



Project	--	wriIng	

•  Do	not	keep	it	for	the	end!	
•  As	you	go,	put	in	plots,	pictures,	diagrams	in	the	
document.	You	can	change/remove	them	later	

•  Put	in	small	paragraphs,	descripIons	as	they	
occur	to	you	–	you	will	not	remember	this	on	the	
last	day.	

•  Remember	the	thoughts,	discussions,	problems,	
ideas	as	you	go	along.	This	will	help	you	to	write	
an	interesIng	report.		



Topics	

•  Are	there	topics	you	would	like	disucssed	in	
class?	Let	me	know	on	Piazza	



Spectral	methods	

•  Understanding	a	graph	using	eigen	values	and	
eigen	vectors	of	the	matrix	

•  We	saw:		
•  Ranks	of	web	pages:	components	of	1st	eigen	
vector	of	suitable	matrix	

•  Pagerank	or	HITS	are	algorithms	designed	to	
compute	the	eigen	vector	

•  Today:	other	ways	spectral	methods	help	in	
network	analysis	



Laplacian	

•  L	=	D	–	A			[D	is	the	diagonal	matrix	of	degrees]	

•  An	eigen	vector	has	one	value	for	each	node	
•  We	are	interested	in	properIes	of	these	
values	

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775



Laplacian	

•  L	=	D	–	A			[D	is	the	diagonal	matrix	of	degrees]	

•  Symmetric.	Real	Eigen	values.		
•  Row	sum=0.	Singular	matrix.	At	least	one	eigen	
value	=0.	

•  PosiIve	semidefinite.	Non-negaIve	eigen	values	

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775



ApplicaIon	1:	Drawing	a	graph	
(Embedding)	

•  Problem:	Computer	does	
not	know	what	a	graph	is	
supposed	to	look	like	

•  A	graph	is	a	jumble	of	
edges	

•  Consider	a	grid	graph:	
•  We	want	it	drawn	nicely	



Graph	embedding	
•  Find	posiIons	for	verIces	of	a	graph	in	low	
dimension	(compared	to	n)	

•  Common	objecIve:	Preserve	some	properIes	of	
the	graph	e.g.	approximate	distances	between	
verIces.	Create	a	metric	
– Useful	in	visualizaIon	
–  Finding	approximate	distances	
–  Clustering		

•  Using	eigen	vectors	
– One	eigen	vector	gives	x	values	of	nodes	
– Other	gives	y-values	of	nodes	…	etc	



Draw	with	v[1]	and	v[2]	

•  Suppose	v[0],	v[1],	v[2]…	
are	eigen	vectors	
– Sorted	by	increasing	eigen	
values	

•  Plot	graph	using	X=v[1],	
Y=v[2]	

•  Produces	the	grid	



IntuiIons:	the	1-D	case	

•  Suppose	we	take	the	jth	eigen	vector	of	a	
chain		

•  What	would	that	look	like?		
•  We	are	going	to	plot	the	chain	along	x-axis	
•  The	y	axis	will	have	the	value	of	the	node	in	
the	jth	eigen	vector		

•  We	want	to	see	how	these	rise	and	fall	



ObservaIons	
•  j	=	0	

•  j=1	

•  j=2	

•  j	=3	

•  j	=	19	



For	All	j	



ObservaIons	

•  In	Dim	1	grid:	
–  v[1]	is	monotone		
–  v[2]	is	not	monotone		

•  In	dim	2	grid:		
–  both	v[1]	and	v[2]	are	
monotone	in	suitable	
direcIons		

•  For	low	values	of	j:	
– Nearby	nodes	have	similar	
values	
•  Useful	for	embedding	



ApplicaIon	2:	Colouring	
•  Colouring:	Assign	colours	to	
verIces,	such	that	
neighboring	verIces	do	not	
have	same	colour	
–  E.g.	Assignment	of	radio	
channels	to	wireless	nodes.	
Good	colouring	reduces	
interference	

•  Idea:	High	eigen	vectors	give	
dissimilar	values	to	nearby	
nodes	

•  Use	for	colouring!	



ApplicaIon	3:	Cuts/segmentaIon/
clustering	

•  Find	the	smallest	‘cut’	
•  A	small	set	of	edges	
whose	removal	
disconnects	the	graph	

•  Clustering,	community	
detecIon…		



Clustering/community	detecIon	

•  v[1]	tends	to	stretch	
the	narrow	
connecIons:	
discriminates	
different	
communiIes		



Clustering:	community	detecIon	

•  More	communiIes	
•  Spectral	embedding		
needs	higher	
dimensions	

•  Warning:	it	does	not	
always	work	so	cleanly	

•  In		this	case,	the	data	
is	very	symmetric	



Image	segmentaIon	
Shi	&	malik	’00	



Laplacian	matrix	

•  Imagine	a	small	and	different	quanIty	of	heat	
at	each	node	(say,	in	a	metal	mesh)		

•  we	write	a	funcIon	u:	u(i)	=	heat	at	i	
•  This	heat	will	spread	through	the	mesh/graph	
•  QuesIon:	how	much	heat	will	each	node	have	
aler	a	small	amount	of	Ime?	

•  “heat”	can	be	representaIve	of	the	
probability	of	a	random	walk	being	there	



Heat	diffusion	

•  Suppose	nodes	i	and	j	are	neighbors	
– How	much	heat	will	flow	from	i	to	j?		



Heat	diffusion	

•  Suppose	nodes	i	and	j	are	neighbors	
•  How	much	heat	will	flow	from	i	to	j?		
•  ProporIonal	to	the	gradient:		
– u(i)	-	u(j)		
–  this	is	signed:	negaIve	means	heat	flows	into	i	



Heat	diffusion	

•  If	i	has	neighbors	j1,	j2….	
•  Then	heat	flowing	out	of	i	is:	

	=	u(i)	-	u(j1)		+		u(i)	-	u(j2)	+	u(i)	-	u(j3)	+	…	
	=	degree(i)*u(i)	-	u(j1)	-	u(j2)	-	u(j3)	-	….	

•  Hence	L	=	D	-	A	



The	heat	equaIon	

•  The	net	heat	flow	out	of	nodes	in	a	Ime	step	
•  The	change	in	heat	distribuIon	in	a	small	Ime	
step	
– The	rate	of	change	of	heat	distribuIon	

@u

@t
= L(u)



The	smooth	heat	equaIon	

•  The	smooth	Laplacian:	

•  The	smooth	heat	equaIon:	

�f =
@f

@t



Heat	flow	

•  Will	eventually	converge	to	
v[0]	:	the	zeroth	eigen	
vector,	with	eigen	value		

•  v[0]	is	a	constant:	no	more	
flow!	

�0 = 0

v[0]	=	const	



Laplacian	
•  Changed	implied	by	L	on	any	
input	vector	can	be	represented	
by	sum	of	acIon	of	its	eigen	
vectors	(we	saw	this	last	Ime	
for	MMT)	

•  v[0]	is	the	slowest	component	
of	the	change		
– With	mulIplier	λ0=0	

•  v[1]	is	slowest	non-zero	
component	
– with	mulIplier	λ1	



Spectral	gap	
•  λ1	–	λ0	

•  Determines	the	overall	speed	of	change	
•  If	the	slowest	component		v[1]		changes	fast	
–  Then	overall	the	values	must	be	changing	fast	
–  Fast	diffusion	

•  If	the	slowest	component	is	slow	
–  Convergence	will	be	slow	

•  Examples:		
–  Expanders	have	large	spectral	gaps	
–  Grids	and	dumbbells	have	small	gaps	~	1/n	



ApplicaIon	4:	isomorphism	tesIng	

•  Eigen	values	different	implies	graphs	are	
different	

•  Though	not	necessarily	the	other	way	



Spectral	methods	
•  Wide	applicability	inside	and	outside	networks	
•  Related	to	many	fundamental	concepts	

–  PCA	
–  SVD	

•  Random	walks,	diffusion,	heat	equaIon…	
•  Results	are	good	many	Imes,	but	not	always	
•  RelaIvely	to	prove	properIes	
•  Inefficient:	eig.	computaIon	costly	on	large	matrix	
•  (Somewhat)	efficient	methods	exist	for	more	restricted	

problems	
–  e.g.	when	we	want	only	a	few	smallest/largest	eigen	vectors		


