Epidemics

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

Spread of diseases

- Pattern depends on network structure
- e.g. spread of flu
- Network of people
- Network of airlines
- Different from idea/innovation contagion
 - Does not need a "decision"
 - Does not need multiple support
 - Infectious disease passes easily with some probability

- Suppose everyone meets k new people and infects each with probability p
- That is, they infect R = kp people on average

- If p is high
- The disease will persists through rounds
- If p is low, it will die out after some rounds

Property

- When R > 1 number of infected people keeps increasing
 - Outbreak
- When R < 1 Number of infected people decreases
 Disease dies out
- Phase transition at R = 1
- assuming there are enough "new" people supply to meet
- Generally true in the initial stages

- Around R = 1: small efforts can have large effects on epidemic
 - Awareness causing slight decrease in p
 - Quarantine/fear causing slight decrease in k

SIR Model

- Susceptible (initially)
- Infectious (after being infected)
 - While Infectious, it can pass disease to each neighbor in each step with prob. p
- Removed (after given duration as Infectious)
 Immune/dead

SIS model

 No "Removed" state. Susceptible follows Infectious

SIRS model

- Susceptible
- Infectious
- Recovered (immune)
- Susceptible

SIRS oscillations in Watts-Strogatz Small worlds

- Nodes connected to few nighbors on a ring
- Fraction c of links modified to connect to random nodes

Epidemic or gossip algorithm

- Emulates the spread of epidemic or a rumor in a network
- A node speaks to a random neighbor to spread the rumor message
- Useful for spreading information in computer networks