Clustering and community detection

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.
• Plan/proposal guidelines are up
• Office hours
 – Wednesdays 12:00 – 13:00
 – (May change in future. Always check web page for times and announcements.)
Community detection

• Given a network
• What are the “communities”
 – Closely connected groups of nodes
 – Relatively few edges to outside the community

• Similar to clustering in data sets
 – Group together points that are more close or similar to each other than other points
Community detection by clustering

• First, define a metric between nodes
 – Either compute intrinsic metrics like all pairs shortest paths [Floyd-Warshall algorithm $O(n^3)$]
 – Or embed the nodes in a Euclidean space, and use the metric there
 • We will later study embedding methods
• Apply a clustering algorithm with the metric
Clustering

• A core problem of machine learning:
 – Which items are in the same group?
• Identifies items that are similar relative to rest of data
• Simplifies information by grouping similar items
 – Helps in all types of other problems
Clustering

• Outline approach:
 • Given a set of items
 – Define a distance between them
 • E.g. Euclidean distance between points in a plane; Euclidean distance between other attributes; non-euclidean distances; path lengths in a network; tie strengths in a network...
 – Determine a grouping (partitioning) that optimises some function (prefers ‘close’ items in same group).

• Reference for clustering:
 – Charu Aggarwal: The Data Mining Textbook, Springer
 • Free on Springer site (from university network)
 – Blum et al. Foundations of Data Science (free online)
K-means clustering

• Find k-clusters \(C = \{C_1, \ldots, C_k\} \)
 - With centers \(c_1, \ldots, c_k, \)
 - That minimize the sum of squared distances of nodes to their clusters (called the k-means cost)

\[
\Phi_{k\text{means}}(C) = \sum_{j=1}^{k} \sum_{a_i \in C_j} d^2(a_i, c_j)
\]
K-means clustering: Lloyd’s algorithm

• There are n items
• Select k ‘centers’
 – May be random k locations in space
 – May be location of k of the items selected randomly
 – May be chosen according to some method
• Iterate till convergence:
 – Assign each item to the cluster for its closest center
 – Recompute location of center as the mean location of all elements in the cluster
 – Repeat
• Warning: Lloyd’s algorithm is a Heuristic. Does not guarantee that the k-means cost is minimised
K-means

• Visualisations
 - http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
 - http://shabal.in/visuals/kmeans/1.html
K-means

- Ward’s algorithm (also Heuristic)
 - Start with each node as its own cluster
 - At each round, find two clusters such that merging them will reduce the k-means cost the most
 - Merge these two clusters
 - Repeat until there are k-clusters
K means: discussion

• Tries to minimise sum of distances of items to cluster centers
 – Computationally hard problem
 – Algorithm gives local optimum

• Depends on initialisation (starting set of centers)
 – Can give poor results
 – Slow speed

• The right ‘k’ may be unknown
 – Possible strategy: try different possibilities and take the best

• Can be improved by heuristics like choosing centers carefully
 – E.g. choosing centers to be as far apart as possible: choose one, choose point farthest to it, choose point farthest to both (maximise min distance to existing set etc)...
 – Try multiple times and take best result..
K-medoids

• Similar, but now each center must be one of the given items
 – In each cluster, find the item that is the best ‘center’ and repeat
• Useful when there is no ambient space (extrinsic metric)
 – E.g. A distance between items can be computed between nodes, but they are not in any particular Euclidean space, so the ‘center’ is not a meaningful point
Other center based methods

• K-center: Minimise maximum distance to center:
 \[\Phi_{k_{\text{center}}}(C) = \max_{j=1}^{k} \max_{a_i \in C_j} d(a_i, c_j) \]

• K-median: Minimise sum of distances:
 \[\Phi_{k_{\text{median}}}(C) = \sum_{j=1}^{k} \sum_{a_i \in C_j} d(a_i, c_j) \]
Hierarchical clustering

- Hierarchically group items
Hierarchical clustering

• Top down (divisive):
 – Start with everything in 1 cluster
 – Make the best division, and repeat in each subcluster

• Bottom up (agglomerative):
 – Start with n different clusters
 – Merge two at a time by finding pairs that give the best improvement
Hierarchical clustering

• Gives many options for a flat clustering
• Problem: what is a good ‘cut’ of the dendogram?
Density based clustering

- Group dense regions together
- Better at non-linear separations
- Works with unknown number of clusters
DBSCAN

• Density at a data point:
 – Number of data points within radius Eps

• A core point:
 – Point with density at least τ

• Border point
 – Density less than τ, but at least one core point within radius Eps

• Noise point
 – Neither core nor border. Far from dense regions

Algorithm $DBSCAN$(Data: \mathcal{D}, Radius: Eps, Density: τ)

begin
 Determine core, border and noise points of \mathcal{D} at level (Eps, τ);
 Create graph in which core points are connected
 if they are within Eps of one another;
 Determine connected components in graph;
 Assign each border point to connected component
 with which it is best connected;
 return points in each connected component as a cluster;
end
DBSCAN: Discussions

• Requires knowledge of suitable radius and density parameters (Eps and τ)
• Does not allow for possibility that different clusters may have different densities
Density based clustering

• Single linkage (same as Kruskal’s MST algorithm)
 – Start with n clusters
 – Merge two clusters with the shortest bridging link
 – Repeat until k clusters

• Other, more robust methods exist
Communities

- Groups of friends
- Colleagues/collaborators
- Web pages on similar topics
- Biological reaction groups
- Similar customers/users ...
Other applications

• A coarser representation of networks
• One or more meta-node for each community
• Identify bridges/weak-links
• Structural holes
Community detection in networks

• A simple strategy:
 – Choose a suitable distance measure based on available data
 • E.g. Path lengths; distance based on inverse tie strengths; size of largest enclosing group or common attribute; distance in a spectral (eigenvector) embedding; etc..
 – Apply a standard clustering algorithm
Clustering is not always suitable in networks

- Small world networks have small diameter
 - And sometime integer distances
 - A distance based method does not have a lot of option to represent similarities/dissimilarities
- High degree nodes are common
 - Connect different communities
 - Hard to separate communities
- Edge densities vary across the network
 - Same threshold does not work well everywhere
Definitions of communities

• Varies. Depending on application

• General idea: **Dense subgraphs:** More links within community, few links outside

• Some types and considerations:
 – Partitions: Each node in exactly one community
 – Overlapping: Each node can be in multiple communities
Finding dense subgraphs is hard in general

- Finding largest clique
 - NP-hard
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist

- Decision version: Does a clique of size k exist?
 - NP-complete
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist
Dense subgraphs: Few preliminary definitions

- For S, T subgraphs of V
- $e(S,T)$: Set of edges from S to T
 - $e(S)$ = $e(S,S)$: Edges within S
- $d_S(v)$: number of edges from v to S
- Edge density of S: $|e(S)|/|S|$
 - Largest for complete graphs or cliques
Dense subgraph

• The subgraph with largest edge density
• There also exists a decision version:
 – Is there a subgraph with edge density > \(\alpha \)
• Can be solved using Max Flow algorithms
 – \(O(n^2m) \) : inefficient in large datasets
 – Finds the one densest subgraph
• Variant: Find densest \(S \) containing given subset \(X \)
• Other versions: Find subgraphs size \(k \) or less
• NP-hard
Efficient approximation for finding dense S containing X

Let $G_n \leftarrow G$.

for $k = n$ downto $|X| + 1$ do

Let $v \notin X$ be the lowest degree node in $G_k \setminus X$.

Let $G_{k-1} \leftarrow G_k \setminus \{v\}$.

Output the densest subgraph among $G_n, \ldots, G_{|X|}$.

• Gives a $1/2$ approximation
• Edge density of output S set is at least half of optimal set S^*

• (Proof in Kempe 2011).
Modularity

- We want to find the many communities, not just one
- Clustering a graph
- Problem: What is the right clustering?
- Idea: Maximize a quantity called *modularity*
Modularity of subset S

• Given graph G
• Consider a random G' graph with same node degrees (remember configuration model)
 – Number of edges in S in G: $|e(S)|_G$
 – Expected number of edges in S in G': $E[|e(S)|_{G'}]$
 – Modularity of S: $|e(S)| - E[|e(S)|_{G'}]$
 – More coherent communities have more edges inside than would be expected in a random graph with same degrees
 – Note: modularity can be negative
Modularity of a clustering

• Take a partition (clustering) of V: \(\mathcal{P} = \{S_1, \ldots, S_k\} \)
• Write \(d(S_i) \) for sum of degrees of all nodes in \(S_i \)
• Can be shown that \(E[|e(S)|_{G'}] \sim d(S_i)^2 \)
• Definition: Sum over the partition:

\[
q(\mathcal{P}) = \frac{1}{m} \sum_i |e(S_i)| - \frac{1}{4m}d(S_i)^2
\]
Modularity based clustering

- Modularity is meant for use more as a measure of quality, not so much as a clustering method.
- Finding clustering with highest modularity is NP-hard.
- Heuristic:
 - Use modularity matrix.
 - Take its first eigen vector.
- Note: Modularity is a relative measure for comparing community structure.
- Not entirely clear in which cases it may or may not give good results.
- A threshold of 0.3 or more is sometimes considered to give good clustering.
• Can be used as a stopping criterion (or finding right level of partitioning) in other methods
 — Eg. Girvan-newman
Karate club hierarchic clustering

• Shape of nodes gives actual split in the club due to internal conflicts
 – Newman 2003
Overlapping communities

Nodes: Facebook Users
Edges: Friendships
Non-overlapping vs. overlapping communities
Non-Overlapping communities
Overlapping communities
Affiliation graph model

- Generative model:
 - Each node belongs to some communities
 - If both a and b are in community c
 - Edge (a, b) is created with probability p_c
Affiliation graph model

• Problem:
• Given the network, recover:
 – Communities: C
 – Memberships or Affiliations: M
• Probabilities: p_c
AGM can express a variety of community structures:
Non-overlapping, Overlapping, Nested
Maximum likelihood estimation

• Given data X
• Assume data is generated by some model f with parameters Θ
• Express probability $P[f(X \mid \Theta)]: f$ generates X, given specific values of Θ.
• Compute $\arg\max_{\Theta} (P[f(X \mid \Theta)])$
MLE for AGM: The BIGCLAM method

• Finding the best possible bipartite network is computationally hard (too many possibilities)
• Instead, take a model where memberships are real numbers: Membership strengths
 — F_{uA} Strength of membership of u in A
 — $P_A(u,v) = 1 - \exp(-F_{uA}.F_{vA})$: Each community links independently, by product of strengths
 — Total probability of an edge existing:
 • $P(u,v) = 1 - \Pi_c(1 - P_c(u,v))$
BIGCLAM

• Find the F that maximizes the likelihood that exactly the right set of edges exist.
• Details Omitted

• Optionally, See

• Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach by J. Yang, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2013.
Correlation clustering

- Some edges are known to be similar/friends/trusted
 - marked “+”
- Some edges are known to be dissimilar/enemies/distrusted
 - marked “-”
- Maximize the number of + edges inside clusters and
- Maximize the number of - edges between clusters
Applications

- Community detection based on similar people/users
- Document clustering based on known similarity or dissimilarity between documents
Features

• Clustering without need to know number of clusters
 – k-means, medians, clusters etc need to know number of clusters or other parameters like threshold
 – Number of clusters depends on network structure
• Actually, does not need any parameter
• NP hard
• Note that graph may be complete or not complete
 – In some applications with unlabeled edges, it may be reasonable to change edges to “+” edges and non-edges to “-” edges
Approximation

• Naive 1/2 approximation (not very useful):
 – If there are more + edges
 • Put them all in 1 cluster
 – If there are more - edges
 • Put nodes in n different clusters
Better approximations

• 2 ways of looking at it:
 – Maximize agreement or Minimize disagreement
 – Similar idea, but we know different approximation algorithms

• Nikhil Bansal et al. develop PTAS (polynomial time approximation scheme) for maximizing agreement:
 – (1-ε) approximation, running time $O(n^2e^{O(1/ε)})$
Approximation

• Min-disagree:
 – 4-approximation