Clustering and community detection

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

- Plan/proposal guidelines are up
- Office hours
 - Wednesdays 12:00 13:00
 - (May change in future. Always check web page for times and announcements.)

Community detection

- Given a network
- What are the "communities"
 - Closely connected groups of nodes
 - Relatively few edges to outside the community
- Similar to clustering in data sets
 - Group together points that are more close or similar to each other than other points

Community detection by clustering

- First, define a metric between nodes
 - Either compute intrinsic metrics like all pairs
 shortest paths [Floyd-Warshall algorithm O(n³)]
 - Or embed the nodes in a Euclidean space, and use the metric there
 - We will later study embedding methods
- Apply a clustering algorithm with the metric

Clustering

- A core problem of machine learning:
 - Which items are in the same group?
- Identifies items that are similar relative to rest of data
- Simplifies information by grouping similar items
 - Helps in all types of other problems

Clustering

- Outline approach:
- Given a set of items
 - Define a distance between them
 - E.g. Euclidean distance between points in a plane; Euclidean distance between other attributes; non-euclidean distances; path lengths in a network; tie strengths in a network...
 - Determine a grouping (partitioning) that optimises some function (prefers 'close' items in same group).
- Reference for clustering:
 - Charu Aggarwal: The Data Mining Textbook, Springer
 - Free on Springer site (from university network)
 - Blum et al. Foundations of Data Science (free online)

K-means clustering

- Find k-clusters $C = \{C_1, \ldots, C_k\}$
 - With centers $\mathbf{c}_1, \ldots, \mathbf{c}_k$,
 - That minimize the sum of squared distances of nodes to their clusters (called the k-means cost)

$$\Phi_{kmeans}(\mathcal{C}) = \sum_{j=1}^k \sum_{\mathbf{a}_i \in C_j} d^2(\mathbf{a}_i, \mathbf{c}_j)$$

K-means clustering: Lloyd's algorithm

- There are n items
- Select k 'centers'
 - May be random k locations in space
 - May be location of k of the items selected randomly
 - May be chosen according to some method
- Iterate till convergence:
 - Assign each item to the cluster for its closest center
 - Recompute location of center as the mean location of all elements in the cluster
 - Repeat
- Warning: Lloyd's algorithm is a Heuristic. Does not guarantee that the k-means cost is minimised

K-means

- Visualisations
- <u>http://stanford.edu/class/ee103/</u> visualizations/kmeans/kmeans.html
- http://shabal.in/visuals/kmeans/1.html

K-means

- Ward's algorithm (also Heuristic)
 - Start with each node as its own cluster
 - At each round, find two clusters such that merging them will reduce the k-means cost the most
 - Merge these two clusters
 - Repeat until there are k-clusters

K means: discussion

- Tries to minimise sum of distances of items to cluster centers
 - Computationally hard problem
 - Algorithm gives local optimum
- Depends on initialisation (starting set of centers)
 - Can give poor results
 - Slow speed
- The right 'k' may be unknown
 - Possible strategy: try different possibilities and take the best
- Can be improved by heuristics like choosing centers carefully
 - E.g. choosing centers to be as far apart as possible: choose one, choose point farthest to it, choose point farthest to both (maximise min distance to existing set etc)...
 - Try multiple times and take best result..

K-medoids

- Similar, but now each center must be one of the given items
 - In each cluster, find the item that is the best 'center' and repeat
- Useful when there is no ambient space (extrinsic metric)
 - E.g. A distance between items can be computed between nodes, but they are not in any particular Euclidean space, so the 'center' is not a meaningful point

Other center based methods

K-center: Minimise maximum distance to center:
 Φ_{kcenter}(C) = max max d(a_i, c_j)

• K-median: Minimise sum of distances: $\Phi_{kmedian}(\mathcal{C}) = \sum_{i=1}^{k} \sum_{\mathbf{a}_i \in C_i} d(\mathbf{a}_i, \mathbf{c}_j)$

Hierarchical clustering

• Hierarchically group items

Hierarchical clustering

- Top down (divisive):
 - Start with everything in 1 cluster
 - Make the best division, and repeat in each subcluster
- Bottom up (agglomerative):
 - Start with n different clusters
 - Merge two at a time by finding pairs that give the best improvement

(a) Dendrogram

Hierarchical clustering

- Gives many options for a flat clustering
- Problem: what is a good 'cut' of the dendogram?

Density based clustering

- Group dense regions together
- Better at non-linear separations
- Works with unknown number of clusters

DBSCAN

- Density at a data point:
 - Number of data points within radius Eps
- A core point:
 - Point with density at least τ
- Border point
 - Density less than τ , but at least one core point within radius Eps
- Noise point
 - Neither core nor border. Far from dense regions

Algorithm *DBSCAN*(Data: \mathcal{D} , Radius: *Eps*, Density: τ) **begin**

Determine core, border and noise points of \mathcal{D} at level (Eps, τ) ;

Create graph in which core points are connected

if they are within Eps of one another;

Determine connected components in graph;

Assign each border point to connected component

with which it is best connected;

return points in each connected component as a cluster; end

DBSCAN: Discussions

- Requires knowledge of suitable radius and density parameters (Eps and τ)
- Does not allow for possibility that different clusters may have different densities

Density based clustering

- Single linkage (same as Kruskal's MST algorithm)
 - Start with n clusters
 - Merge two clusters with the shortest bridging link
 - Repeat until k clusters
- Other, more robust methods exist

Communities

- Groups of friends
- Colleagues/collaborators
- Web pages on similar topics
- Biological reaction groups
- Similar customers/users ...

Other applications

- A coarser representation of networks
- One or more meta-node for each community
- Identify bridges/weak-links
- Structural holes

Community detection in networks

- A simple strategy:
 - Choose a suitable distance measure based on available data
 - E.g. Path lengths; distance based on inverse tie strengths; size of largest enclosing group or common attribute; distance in a spectral (eigenvector) embedding; etc..
 - Apply a standard clustering algorithm

Clustering is not always suitable in networks

- Small world networks have small diameter
 - And sometime integer distances
 - A distance based method does not have a lot of option to represent similarities/dissimilarities
- High degree nodes are common
 - Connect different communities
 - Hard to separate communities
- Edge densities vary across the network
 - Same threshold does not work well everywhere

Definitions of communities

- Varies. Depending on application
- General idea: **Dense subgraphs:** More links within community, few links outside
- Some types and considerations:
 - Partitions: Each node in exactly one community
 - Overlapping: Each node can be in multiple communities

Finding dense subgraphs is hard in general

- Finding largest clique
 - NP-hard
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist
- Decision version: Does a clique of size k exist?
 - NP-complete
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist

Dense subgraphs: Few preliminary definitions

- For S, T subgraphs of V
- e(S,T): Set of edges from S to T
 e(S) = e(S,S): Edges within S
- d_s(v) : number of edges from v to S
- Edge density of S : |e(S)|/|S|
 - Largest for complete graphs or cliques

Dense subgraph

- The subgraph with largest edge density
- There also exists a decision version:
 - Is there a subgraph with edge density > α
- Can be solved using Max Flow algorithms
 - O(n²m) : inefficient in large datasets
 - Finds the one densest subgraph
- Variant: Find densest S containing given subset X
- Other versions: Find subgraphs size k or less
- NP-hard

Efficient approximation for finding dense S containing X

Let $G_n \leftarrow G$. for k = n downto |X| + 1 do Let $v \notin X$ be the lowest degree node in $G_k \setminus X$. Let $G_{k-1} \leftarrow G_k \setminus \{v\}$. Output the densest subgraph among $G_n, \ldots, G_{|X|}$.

- Gives a 1/2 approximation
- Edge density of output S set is at least half of optimal set S*
- (Proof in Kempe 2011).

Modularity

- We want to find the many communities, not just one
- Clustering a graph
- Problem: What is the right clustering?
- Idea: Maximize a quantity called *modularity*

Modularity of subset S

- Given graph G
- Consider a random G' graph with same node degrees (remember configuration model)
 - Number of edges in S in G: $|e(S)|_{G}$
 - Expected number of edges in S in G': $E[|e(S)|_{G'}]$
 - Modularity of S: $|e(S)| E[|e(S)|_{G'}]$
 - More coherent communities have more edges inside than would be expected in a random graph with same degrees
 - Note: modularity can be negative

Modularity of a clustering

- Take a partition (clustering) of V: $\mathcal{P} = \{S_1, \dots, S_k\}$
- Write d(S_i) for sum of degrees of all nodes in S_i
- Can be shown that $E[|e(S)|_{G'}] \sim d(S_i)^2$
- Definition: Sum over the partition:

$$q(\mathcal{P}) = rac{1}{m} \sum_{i} |e(S_i)| - rac{1}{4m} d(S_i)^2$$

Modularity based clustering

- Modularity is meant for use more as a measure of quality, not so much as a clustering method
- Finding clustering with highest modularity is NP-hard
- Heuristic:
 - Use modularity matrix
 - Take its first eigen vector
- Note: Modularity is a relative measure for comparing community structure.
- Not entirely clear in which cases it may or may not give good results
- A threshold of 0.3 or more is sometimes considered to give good clustering

• Can be used as a stopping criterion (or finding right level of partitioning) in other methods

– Eg. Girvan-newman

Karate club hierarchic clustering

- Shape of nodes gives actual split in the club due to internal conflicts
 - Newman 2003

Overlapping communities

Non-overlapping vs. overlapping communities

Non-Overlapping communities

Overlapping communities

Affiliation graph model

- Generative model:
- Each node belongs to some communities
- If both a and b are in community c
 - Edge (a, b) is created with probability p_c

Affiliation graph model

- Problem:
- Given the network, recover:
 - Communities: C
 - Memberships or Affiliations: M
- Probabilities: p_c

 AGM can express a variety of community structures:
 Non-overlapping,
 Overlapping, Nested

Maximum likelihood estimation

- Given data X
- Assume data is generated by some model f with parameters Θ
- Express probability P[f(X | Θ)]: f generates X, given specific values of Θ.
- Compute argmax_Θ (P[f(X | Θ)])

MLE for AGM: The BIGCLAM method

- Finding the best possible bipartite network is computationally hard (too many possibilities)
- Instead, take a model where memberships are real numbers: Membership strengths
 - $-F_{uA}$ Strength of membership of u in A
 - P_A(u,v) = 1 exp(-F_{uA}.F_{vA}) : Each community links independently, by product of strengths
 - Total probability of an edge existing:
 - $P(u,v) = 1 \Pi_{c}(1 P_{c}(u,v))$

BIGCLAM

- Find the F that maximizes the likelihood that exactly the right set of edges exist.
- Details Omitted
- Optionally, See
- <u>Overlapping Community Detection at Scale: A</u> <u>Nonnegative Matrix Factorization Approach by J.</u> <u>Yang, J. Leskovec. ACM International Conference</u> <u>on Web Search and Data Mining (WSDM), 2013.</u>

Correlation clustering

- Some edges are known to be similar/friends/trusted
- marked "+"
- Some edges are known to be dissimilar/enemies/ distrusted
- marked "-"
- Maximize the number of + edges inside clusters and
- Maximize the number of edges between clusters

Applications

- Community detection based on similar people/users
- Document clustering based on known similarity or dissimilarity between documents

Features

- Clustering without need to know number of clusters
 - k-means, medians, clusters etc need to know number of clusters or other parameters like threshold
 - Number of clusters depends on network structure
- Actually, does not need any parameter
- NP hard
- Note that graph may be complete or not complete
 - In some applications with unlabeled edges, it may be reasonable to change edges to "+" edges and non-edges to "-" edges

Approximation

- Naive 1/2 approximation (not very useful):
 - If there are more + edges
 - Put them all in 1 cluster
 - If there are more edges
 - Put nodes in n different clusters

Better approximations

- 2 ways of looking at it:
 - Maximize agreement or Minimize disagreement
 - Similar idea, but we know different approximation algorithms
- Nikhil Bansal et al. develop PTAS (polynomial time approximation scheme) for maximizing agreement:

- (1- ε) approximation, running time $O(n^2 e^{O(1/\epsilon)})$

Approximation

- Min-disagree:
 - 4-approximation