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Exercises 1 solutions. Sample problems.
Rik Sarkar Exercises

The following are sample problems to test your background for the course. You should be able to
solve most of these without looking up references (or, without looking up too many of them). At
least solve the easy ones, and you should have some idea of what the harder ones mean and how
to approach them.

Exercise 0.1. How many edges can a graph have? (assuming there is at most one edge between
any two vertices.) If each possible edge exists with a probability p, what should be the value of p
such that the expected number of edges at each vertex is 1?

Answer. Assuming it is a simple graph, there is at most one edge between any pair of nodes.
And there are

(
n
2

)
nodes. Thus a grpah can have

(
n
2

)
= n(n−1)

2 edges.

A node v can have at most n − 1 edges incident on it. Each of these exists with a probability p
independent of the others. The expected number of edges at node v is (n− 1)p. Therefore we can
solve for p from (n− 1)p = 1, therefore p = 1

n−1 .

Exercise 0.2. Suppose every year Mr. X makes double the number of friends he made last year
(starting with making 1 friend in first year). In how many years will he make n friends? (asymp-
totic notation is fine.)

Answer. Mr. X makes 1 friend in the first year, 2 in the second year, so he has in total 1+2 friends
in the second year. At the end of m-th year he will have 1+2+ . . . 2m−1 = 2m− 1 friends. Now let
us select the smallest m such that 2m − 1 ≥ n. Observe that by this definition, after year m− 1, he
had strictly less than n friends, and after year m he can actually have much more than n friends.
However, m is still the right answer, because we are counting whole years.

Expressing m in terms of n, we have m = dlg(n + 1)e 1. We have to use the ceiling function here
because n+1 may not be a power of 2, and we need to take the next integer to get a proper count.

Exercise 0.3. Suppose we throw k balls into n bins randomly, what is the probability that bin 1
remains empty?

Answer. Pr[bin 1 is empty after 1 throw] = 1 − 1
n . Therefore, Pr[bin 1 is empty after k throw] =

(1− 1
n)

k.

1The d•e symbol stands for the function ceiling implying the integer greater than or equal to its argument.
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Figure 1. Example of a Grid.

Exercise 0.4. A grid is an arrangement of squares as shown in Fig. ??. Prove that for any given
grid, the number of grid squares inside a circle of radius r is O(r2).

Proof: Let us suppose each grid square has side s, and area s2. Since the interiors of the grid
squares are disjoint, the total area covered by any n distinct grid squares is ns2. The area of the
circle of radius r is πr2, and the maximum number of possible squares in the circle is ≤ πr2/s2.
For a given grid s is fixed, so the number of squares in the circle is O(r2). �

Exercise 0.5. Show that a bipartite graph has no cycles of odd length.

Proof: Suppose the two partitions are U and V . Without loss of generality, let us suppose that
the cycle C starts from u ∈ U . By definition of a bipartite graph, traversal along C must alternate
between the U → V type on odd numbered edges and the V → U type on even numbered edges.
Since the cycle must end at u ∈ U , it must end with a V → U type edge which is even numbered.
Thus C must have even numbered edges. �

Exercise 0.6. An isolated vertex is one which has no edges. Consider a graph G with n vertices
such that every edge exists with probability p = (1 + ε)(lnn)/(n − 1). Prove that the probability
that G has one or more isolated vertices is less than 1/nε.

[Hint: Write the probability that none of the possible edges at a vertex exist. Use the inequality
(1 − p)1/p ≤ 1/e for 0 ≤ p ≤ 1. You can also use the Union bound, which says PrA OR B ≤
PrA+ PrB.]

Proof: At vertex v, probability that a particular edge does not exist is (1−p); the probability q that
the vertex v is isolated, i.e. all n−1 possible edges do not exist is q = (1−p)n−1. We can substitute
n− 1 = (1 + ε)(lnn)/p in the exponent, and get q ≤ e−((1+ε)(lnn)). Therefore, q ≤ n−(1+ε). �
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Harder problems:

* Exercise 0.7. Show that the matrix M =

(
a b
b a

)
has orthogonal eigenvectors for any real

numbers a, b. [Hint: Try comparing values of (Mv) · u and (Mu) · v for vectors u and v, then use
definition of eigen vectors. You can use the fact that M has eigen values λ and µ that are distinct.]

Proof: (Mv) · u =

(
av1 + bv2
bv1 + av2

)
·
(
u1
u2

)
= av1u1 + bv2u1 + bv1u2 + av2u2.

And (Mu) · v =

(
au1 + bu2
bu1 + au2

)
·
(
v1
v2

)
= au1v1 + bu2v1 + bu1v2 + au2v2.

Thus (Mv) · u = (Mu) · v for any vectors u and v. Now suppose u and v are eigen vectors of M ,
with eigen values λ and µ. Then (λu) · v = (Mu) · v = (Mv) · u = (µv) · u.

Since λ 6= µ, it follows that (u · v)(λ− µ) = 0 implies u · v = 0, that is, u and v are orthogonal. �

* Exercise 0.8. Let us define matrices A and B to be similar if there exists a matrix P such that
A = PBP−1.

For similar matrices A and B, show that if λ is an eigenvalue of A, then it is also an eigenvalue
of B. [Hint: Use definition of eigen vector, then multiply both sides by suitable matrices. The
eigen vectors corresponding to the eigen value may not be the same. You can assume A,B, P are
square.]

Proof: Let x be an eigen vector of A with eigen value λ. Also, let use denote P−1x = y.

Ax = λx

⇒ PBP−1x = λx

⇒ BP−1x = P−1λx = λP−1x [After Left-multiplication by P−1]
⇒ By = λy [Substituting y.]

Therefore, λ is also an eigen value of B with eigen vector y. �
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