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Recap:	HITS	algorithm	

•  Evaluate	hub	and	authority	scores	
•  Apply	Authority	update	to	all	nodes:		
– auth(p)	=	sum	of	all	hub(q)	where	q	->	p	is	a	link	

•  Apply	Hub	update	to	all	nodes:	
– hub(p)	=	sum	of	all	auth(r)	where	p->r	is	a	link	

•  Repeat	for	k	rounds	



Adjacency	matrix	

•  Example		



Hubs	and	authority	scores	

•  Can	be	wriQen	as	vectors	h	and	a	

•  The	dimension	(number	of	elements)	of	the	
vectors	are	n	



Update	rules	

•  Are	matrix	mulRplicaRons	



•  Hub	rule	for	i	:	sum	of	a-values	of	nodes	that	i	
points	to:		

•  Authority	rule	for	i	:	sum	of	h-values	of	nodes	
that	point	to	i:	



IteraRons	

•  ASer	one	round:	

•  Over	k	rounds:	



Convergence	

•  Remember	that	h	keeps	increasing	
•  We	want	to	show	that	the	normalized	value	

•  Converges	to	a	vector	of	finite	real	numbers	as	
k	goes	to	infinity	

•  If	convergence	happens,	then	there	is	a	c:	



Eigen	values	and	vectors	

•  Implies	that	for	matrix		
•  c	is	an	eigen	value,	with		
•  								as	the	corresponding	eigen	vector	



Proof	of	convergence	to	eigen	vectors	

•  Useful	Theorem:	A	symmetric	matrix	has	
orthogonal	eigen	vectors.	(see	sample	
problems	from	lecture	1)	
– They	form	a	basis	of	n-D	space	
– Any	vector	can	be	wriQen	as	a	linear	combinaRon	

•  																	is	symmetric	



Now	to	prove	convergence:	
•  Suppose	sorted	eigen	values	are:		

•  Corresponding	eigen	vectors	are:	

•  We	can	write	any	vector	x	as		

•  So:		



•  ASer	k	iteraRons:		

•  For	hubs:		

•  So:		
•  If																		,	only	the	first	term	remains.	
		
•  So,											converges	to		



ProperRes	

•  The	vector	q1z1	is	a	simple	mulRple	of	z1		
– A	vector	essenRally	similar	to	the	first	eigen	
vector	

– Therefore	independent	of	starRng	values	of	h	
•  q1	can	be	shown	to	be	non-zero	always,	so	
the	scores	are	not	zero	

•  Authority	score	analysis	is	analogous	



Pagerank	Update	rule	as	a	matrix	
derived	from	adjacency	

•  w	



•  Scaled	pagerank:		

•  Over	k	iteraRons:	

•  Pagerank	does	not	need	normalizaRon.		

•  We	are	looking	for	an	eigen	vector	with	eigen	
value=1	



•  For	matrix	P	with	all	posiRve	values,	Perron’s	
theorem	says:	
– A	unique	posiRve	real	valued	largest	eigen	value	c	
exists	

– Corresponding	eigen	vector	y	is	unique	and	has	
posiRve	real	coordinates	

–  If	c=1,	then										converges	to	y	



Random	walks	

•  A	random	walker	is	moving	along	random	
directed	edges	

•  Suppose	vector	b	shows	the	probabiliRes	of	
walker	currently	being	at	different	nodes	

•  Then	vector									gives	the	probabiliRes	for	the	
next	step	



Random	walks	

•  Thus,	pagerank	values	of	nodes	aSer	k	
iteraRons	is	equivalent	to:	
– The	probabiliRes	of	the	walker	being	at	the	nodes	
aSer	k	steps	

•  The	final	values	given	by	the	eigen	vector	are	
the	steady	state	probabiliRes	
– Note	that	these	depend	only	on	the	network	and	
are	independent	of	the	starRng	points	



History	of	web	search	

•  YAHOO:	A	directory	(hierarchic	list)	of	websites	
–  Jerry	Yang,	David	Filo,	Stanford	1995	

•  1998:	AuthoritaRve	sources	in	hyperlinked	
environment	(HITS),	symposium	on	discrete	
algorithms	
–  Jon	Kleinberg,	Cornell	

•  1998:	Pagerank	citaRon	ranking:	Bringing	order	
to	the	web	
–  Larry	Page,	Sergey	Brin,	Rajeev	Motwani,	Terry	
Winograd,	Stanford	techreport	



Spectral	graph	theory	

•  Undirected	graphs	
•  Diffusion	operator	
– Describes	diffusion	of	stuff	—	step	by	step	
– Stuff	at	a	vertex	uniformly	distributed	to	
neighbors	—	in	every	step	


