Random Graphs continued

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

- Random graphs on ipython notebook

Recap: clustering coefficients

\# closed triads
\# all triads

- Large ER graphs have cc = 0
- Social graphs may have cc $=0.2$ to 0.6

CC of a graph model

- If we are given a model of a graph
- Clustering is considered significant if
- CC is bounded from below by a constant
- Example problems:
- What can you say about CC of a Tree?
- A complete graph?
- A grid with diagonals added?

Distances in graphs

- Paths
- Shortest paths
- BFS
- Metrics

Path

- A walk is a sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$
- Where any $\left(v_{i}, v_{i+1}\right)$ is an edge in the graph
- A path is a walk where no vertex repeats
- Length of a path or walk is the number of edges it traverses
- In an unweighted graph
- In a weighted graph (edges have numeric weights)
- Length or weight of a path is the sum of weights
- In a directed graph
- A walk or path must respect the directions

Distance

- Distance between any two nodes in a graph is the length of the shortest path between them
- Diameter of a graph:
- Distance between the farthest pair of nodes in the graph
- Connected component
- A maximal subgraph with a path between any two vertices

Metric

- A distance measure d is a metric if:

$$
\begin{aligned}
& -d(x, y) \geq 0 \\
& -d(x, y)=0 \text { iff } x=y \\
& -d(x, y)=d(y, x) \\
& -d(x, z) \leq d(x, y)+d(y, z)
\end{aligned}
$$

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Metric examples

- L2
- L1
- Grid
- Tree

Metric examples

- L2
- L1
- Grid
- Tree

- Test for tree metric
- Any 4 points (vertices) can be ordered as $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ to satisfy:
- $\mathrm{d}(\mathrm{w}, \mathrm{x})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \leq \mathrm{d}(\mathrm{w}, \mathrm{y})+\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{w}, \mathrm{z})+\mathrm{d}(\mathrm{x}, \mathrm{y})$
- And $d(w, y)+d(x, z)=d(w, z)+d(x, y)$

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball

- A ball of radius r at vertex v :
- The set of all nodes within distance r from v
- The first r layers of a BFS from v
- Usually written as
- B(v,r) or
$-B_{r}(v)$
- In a metric space:
- The set of all points within distance r of v
- Sphere $S_{r}(v)$: set of points at distance exactly r from v

Asymptotic notations

- Big O: $f(n)=O(g(n))$
- For large enough n,
- There is a constant c such that $f(n) \leq c . g(n)$
- Big Omega: $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$
- For large enough n,
- There is a constant c such that $f(n) \geq c . g(n)$
- Theta : $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- Both O and Ω

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$
d_{1}, d_{2}, d_{3}, \ldots d_{n}
$$

- At each vertex i we d_{i} open-edges
- Pair up the edges randomly
- If all degrees = d
- Graph is called d-regular

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' of a subset
- Boundary of S :
- e ${ }^{\text {out }(S): ~ e d g e s ~ w i t h ~ e x a c t l y ~ o n e ~ e n d-p o i n t ~ i n ~} S$
- Expansion:

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

Expansion

$$
\alpha=\min _{S \subseteq V} \frac{\left|e^{\text {out }}(S)\right|}{\min (|S|,|\bar{S}|)}
$$

- Equivalently:

$$
\alpha=\min _{|S| \leq n / 2} \frac{\left|e^{\text {out }}(S)\right|}{|S|}
$$

Expanders

- A class of graphs with expansion at least a constant

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

- Random d-regular graphs for d>3
- ER graphs for large enough p

Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

$$
O\left(\frac{d}{\alpha} \lg n\right)
$$

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n^{2})
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

Random graphs: Emergence of giant component

- Suppose N_{G} is the size of the largest connected component in an ER graph
- How does N_{G} / N change with p ?
- When is N_{G} / N at least a constant?

Giant component

- When $p=(1-\varepsilon) / n$
- W.h.p no GC, components of size O(log n)
- When $p=(1+\varepsilon) / n$
- W.h.p GC exists, where $N_{G} / N \sim \varepsilon$
- When $p=1 / n$
- W.h.p Largest component has size $n^{2 / 3}$

