Random Graphs continued

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

• Random graphs on ipython notebook

Recap: clustering coefficients

closed triads
all triads

- Large ER graphs have cc = 0
- Social graphs may have cc = 0.2 to 0.6

CC of a graph model

- If we are given a model of a graph
 - Clustering is considered significant if
 - CC is bounded from below by a constant
- Example problems:
 - What can you say about CC of a Tree?
 - A complete graph?
 - A grid with diagonals added?

Distances in graphs

- Paths
- Shortest paths
- BFS
- Metrics

Path

- A walk is a sequence of vertices v₁, v₂,...
 Where any (v_i, v_{i+1}) is an edge in the graph
- A path is a walk where no vertex repeats
- Length of a path or walk is the number of edges it traverses
 - In an unweighted graph
- In a weighted graph (edges have numeric weights)
 Length or weight of a path is the sum of weights
- In a directed graph
 - A walk or path must respect the directions

Distance

- Distance between any two nodes in a graph is the length of the shortest path between them
- Diameter of a graph:
 - Distance between the farthest pair of nodes in the graph
- Connected component
 - A maximal subgraph with a path between any two vertices

Metric

- A distance measure d is a metric if:
 - $d(x,y) \ge 0$ d(x,y) = 0 iff x=y
 - -d(x,y) = d(y,x)
 - $-\operatorname{d}(x,z) \leq \operatorname{d}(x,y) + \operatorname{d}(y,z)$

The undirected graph distance

- Is a metric
- In unweighted graphs, all values are integers

Metric examples

- L2
- L1
- Grid
- Tree

Metric examples

- L2
- L1
- Grid
- Tree
 - Test for tree metric
 - Any 4 points (vertices) can be ordered as w,x,y,z to satisfy:
 - $d(w,x) + d(y,z) \le d(w,y) + d(x,z) \le d(w,z) + d(x,y)$
 - And d(w,y) + d(x,z) = d(w,z) + d(x,y)

Finding distance between two nodes in a graph

- Breadth first search
- Dijkstra's shortest path algorithm

Ball

- A ball of radius r at vertex v:
 - The set of all nodes within distance r from v
 - The first r layers of a BFS from v
- Usually written as
 - B(v,r) or
 - $B_r(v)$
- In a metric space:
 - The set of all points within distance r of v
- Sphere S_r(v): set of points at distance exactly r from v

Asymptotic notations

- Big O: f(n) = O(g(n))
 - For large enough n,
 - There is a constant c such that $f(n) \le c.g(n)$
- Big Omega: $f(n) = \Omega(g(n))$
 - For large enough n,
 - There is a constant c such that $f(n) \ge c.g(n)$
- Theta : $f(n) = \Theta(g(n))$ - Both O and Ω

Configuration model of Random graphs

- Suppose we want a graph that is random
- But has given degree for each vertex:

$$d_1, d_2, d_3, \ldots d_n$$

- At each vertex i we d_i open-edges
- Pair up the edges randomly
- If all degrees = d

- Graph is called d-regular

Edge Expansion

- How fast the 'boundary' expands relative to 'volume' of a subset
- Boundary of S :

- e^{out}(S): edges with exactly one end-point in S

• Expansion: $\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$

Expansion

$$\alpha = \min_{S \subseteq V} \frac{|e^{out}(S)|}{\min(|S|, |\overline{S}|)}$$

• Equivalently:

$$\alpha = \min_{|S| \le n/2} \frac{|e^{out}(S)|}{|S|}$$

Expanders

A class of graphs with expansion at least a constant

Are the following graphs expanders?

- A chain
- A balanced binary tree
- A grid

Examples of expanders

• Random d-regular graphs for d>3

• ER graphs for large enough p

Expanders have small diameter

- A graph with degrees $\leq d$ and expansion $\geq \alpha$
- Has diameter

Other properties

- Expanders are well connected
- Usually sparse (number of edges much smaller than n²)
- Diffusion processes spread fast in an expander
- Random walks mix fast (achieve steady state)

Random graphs: Emergence of giant component

 Suppose N_G is the size of the largest connected component in an ER graph

• How does N_G/N change with p?

• When is N_G/N at least a constant?

Giant component

• When $p = (1-\epsilon)/n$

- W.h.p no GC, components of size O(log n)

- When $p = (1+\epsilon)/n$ - W.h.p GC exists, where N_G/N ~ ϵ
- When p = 1/n

– W.h.p Largest component has size $n^{2/3}$