Random Graphs

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

- V: set of nodes
- n = |V| : Number of nodes
- E: set of edges
- m=|E| : Number of edges
- If edge a-b exists, then a and b are called neighbors

• How many edges can a graph have?

• How many edges can a graph have?

$$\binom{n}{2} \quad \text{OR} \ \frac{n(n-1)}{2}$$

• In big O?

• How many edges can a graph have?

$$\binom{n}{2} \quad \text{OR} \ \frac{n(n-1)}{2}$$

$$O(n^2)$$

Random graphs

- Most basic, most unstructured graphs
- Forms a baseline
 - What happens in absence of any influences
 - Social and technological forces
- Many real networks have a random component
 - Many things happen without clear reason

Erdos – Renyi Random graphs

Erdos – Renyi Random graphs $\mathcal{G}(n,p)$

- n: number of vertices
- p: probability that any particular edge exists

- Take V with n vertices
- Consider each possible edge. Add it to E with probability p

Expected number of edges

• Expected total number of edges

• Expected number of edges at any vertex

Expected number of edges

• Expected total number of edges $\binom{n}{2}p$

Expected number of edges at any vertex

$$(n-1)p$$

Expected number of edges

• For
$$p = \frac{c}{n-1}$$

• The expected degree of a node is : ?

Isolated vertices

How likely is it that the graph has isolated vertices?

Isolated vertices

How likely is it that the graph has isolated vertices?

What happens to the number of isolated vertices as p increases

Terminology of high probability

• Something happens with high probability if

$$p \ge \left(1 - \frac{1}{\operatorname{poly}(n)}\right)$$

- Where poly(n) means a polynomial in n
- A polynomial in n is considered reasonably 'large'

Probability of Isolated vertices

- Isolated vertices are
- Likely when: $p < \frac{\ln n}{n}$
- Unlikely when: $p > \frac{\ln n}{n}$
- Let's deduce

Useful inequalities

Union bound

• For events A, B, C ...

• $Pr[A \text{ or } B \text{ or } C \dots] \leq Pr[A] + Pr[B] + Pr[C] + \dots$

- Theorem 1: • If $p = (1 + \epsilon) \frac{\ln n}{n - 1}$
- Then the probability that there exists an isolated vertex $\leq \frac{1}{n^{\epsilon}}$
- Thus for large n, w.h.p there is no isolated vertex
- Expected number of isolated vertices is miniscule

• Theorem 2
• For
$$p = (1 - \epsilon) \frac{\ln n}{n - 1}$$

- Probability that vertex v is isolated $\geq \frac{1}{(2n)^{1-\epsilon}}$

• Theorem 2
• For
$$p = (1 - \epsilon) \frac{\ln n}{n - 1}$$

- Probability that vertex v is isolated $\geq \frac{1}{(2n)^{1-\epsilon}}$
- Expected number of isolated vertices:

$$\geq \frac{n}{(2n)^{1-\epsilon}} = \frac{n^{\epsilon}}{2}$$

Polynomial in n

Threshold phenomenon: Probability or number of isolated vertices

• The tipping point

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
 Edges AB and BC exist
- Then ABC is said to form a Triad
 - Closed triad : Edge AC also exists
 - Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc : average of cc of all nodes
- Global cc : ratio # closed triads
 # all triads

Global CC in ER graphs

• What happens when p is very small (almost 0)?

• What happens when p is very large (almost 1)?

Global CC in ER graphs

• What happens at the tipping point?

Theorem

• For
$$p = c \frac{\ln n}{n}$$

٦

• Global cc in ER graphs is vanishingly small

$$\lim_{n \to \infty} cc(G) = \lim_{n \to \infty} \frac{\# \text{ closed triads}}{\# \text{ all triads}} = 0$$

Avg CC In real networks

- Facebook (old data) ~ 0.6
 - <u>https://snap.stanford.edu/data/egonets-</u> <u>Facebook.html</u>
- Google web graph ~0.5
 - <u>https://snap.stanford.edu/data/web-Google.html</u>
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
 - that the network has significant clustering/ community structure