Random Graphs

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

Graph

- V : set of nodes
- $\mathrm{n}=|\mathrm{V}|$: Number of nodes
- E: set of edges
- $m=|E|$: Number of edges
- If edge $a-b$ exists, then a and b are called neighbors

Graph

- How many edges can a graph have?

Graph

- How many edges can a graph have?

$$
\binom{n}{2} \quad \text { OR } \frac{n(n-1)}{2}
$$

- In big O?

Graph

- How many edges can a graph have?

$$
\binom{n}{2} \quad \text { OR } \frac{n(n-1)}{2}
$$

$O\left(n^{2}\right)$

Random graphs

- Most basic, most unstructured graphs
- Forms a baseline
- What happens in absence of any influences
- Social and technological forces
- Many real networks have a random component
- Many things happen without clear reason

Erdos - Renyi Random graphs

Erdos - Renyi Random graphs

$$
\mathcal{G}(n, p)
$$

- n : number of vertices
- p: probability that any particular edge exists
- Take V with n vertices
- Consider each possible edge. Add it to E with probability p

Expected number of edges

- Expected total number of edges
- Expected number of edges at any vertex

Expected number of edges

- Expected total number of edges $\binom{n}{2} p$
- Expected number of edges at any vertex

$$
(n-1) p
$$

Expected number of edges

- For $p=\frac{c}{n-1}$
- The expected degree of a node is : ?

Isolated vertices

- How likely is it that the graph has isolated vertices?

Isolated vertices

- How likely is it that the graph has isolated vertices?
- What happens to the number of isolated vertices as p increases

Terminology of high probability

- Something happens with high probability if

$$
p \geq\left(1-\frac{1}{\operatorname{poly}(n)}\right)
$$

- Where poly(n) means a polynomial in n
- A polynomial in n is considered reasonably 'large'

Probability of Isolated vertices

- Isolated vertices are
- Likely when: $\quad p<\frac{\ln n}{n}$
- Unlikely when: $\quad p>\frac{\ln n}{n}$
- Let's deduce

Useful inequalities

$$
\begin{aligned}
& \left(1+\frac{1}{x}\right)^{x} \leq e \\
& \left(1-\frac{1}{x}\right)^{x} \leq \frac{1}{e}
\end{aligned}
$$

Union bound

- For events A, B, C...
- $\operatorname{Pr}[\mathrm{A}$ or B or $\mathrm{C} \ldots] \leq \operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]+\operatorname{Pr}[\mathrm{C}]+\ldots$
- Theorem 1:
- If $\quad p=(1+\epsilon) \frac{\ln n}{n-1}$
- Then the probability that there exists an isolated vertex

$$
\leq \frac{1}{n^{\epsilon}}
$$

- Thus for large n, w.h.p there is no isolated vertex
- Expected number of isolated vertices is miniscule
- Theorem 2
- For $p=(1-\epsilon) \frac{\ln n}{n-1}$
- Probability that vertex v is isolated $\geq \frac{1}{(2 n)^{1-\epsilon}}$
- Theorem 2
- For $p=(1-\epsilon) \frac{\ln n}{n-1}$
- Probability that vertex v is isolated $\geq \frac{1}{(2 n)^{1-\epsilon}}$
- Expected number of isolated vertices:

$$
\geq \frac{n}{(2 n)^{1-\epsilon}}=\frac{n^{\epsilon}}{2}
$$

Polynomial in n

Threshold phenomenon: Probability or number of isolated vertices

- The tipping point

Clustering in social networks

- People with mutual friends are often friends
- If A and C have a common friend B
- Edges AB and BC exist
- Then $A B C$ is said to form a Triad
- Closed triad : Edge AC also exists
- Open triad: Edge AC does not exist
- Exercise: Prove that any connected graph has at least n triads (considering both open and closed).

Clustering coefficient (cc)

- Measures how tight the friend neighborhoods are: frequency of closed triads
- cc(A) fractions of pairs of A's neighbors that are friends
- Average cc: average of cc of all nodes
- Global cc : ratio \# closed triads \# all triads

Global CC in ER graphs

- What happens when p is very small (almost 0)?
- What happens when p is very large (almost 1)?

Global CC in ER graphs

- What happens at the tipping point?

Theorem

- For $p=c \frac{\ln n}{n}$
- Global cc in ER graphs is vanishingly small
$\lim _{n \rightarrow \infty} c c(G)=\lim _{n \rightarrow \infty} \frac{\# \text { closed triads }}{\# \text { all triads }}=0$

Avg CC In real networks

- Facebook (old data) ~ 0.6
- https://snap.stanford.edu/data/egonetsFacebook.html
- Google web graph ~0.5
- https://snap.stanford.edu/data/web-Google.html
- In general, cc of ~ 0.2 or 0.3 is considered 'high'
- that the network has significant clustering/ community structure

