Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

Course specifics

- Lectures
 - Tuesdays 12:10 13:00
 - 7 Bristo Square, Lecture Theatre 2
 - Fridays 12:10 13:00
 - 1 George Square, G.8 Gaddum LT
- Web page

<u>http://www.inf.ed.ac.uk/teaching/courses/stn/</u>

• Lookout for announcements on the web page

Network

- A set of entities or nodes: V
- A set of egdes: E
 - Each edge e = (a, b) for nodes a, b in V
 - An edge (a,b) represents existence of a relation or a *link* between a and b

Networks are everywhere

- Any interesting system has many entities or components
- There exist different relations between these components
 - There is a network
- Properties of the network determine properties of the system
- In this course, we will study how network properties are defined, computed and analyzed

Example: Social networks

- Facebook, Linkedin, twitter..
- Nodes are people
- Edges are friendships
- The network determines society, communities, etc..
- How information flows in the society
- How innovation/influence spreads
- Who are the influential people
- Predict behaviour

World wide web

- Links/edges between web pages
- Determines availability of information
- Important pages have more links pointing to them
- Network analysis is the basis of search engines

Computer networks

- What can we say about the internet?
- How reliable are computer networks?

Electricity grid

- Network of many nodes, redistributing power
- Critical infrastructure
- Failure can disrupt ... everything
- Small local failures can spread
 - Load redistributes
 - Trigger a casdade of failures
- Network strcuture is critical

From Barabasi: Network Science

Road network and transportation

- Mobility patterns of people

 Location data
- Failure cascades
- Traffic needs
- Suggest bus routes
- Suggest travel plans
- Traffic engineering
- Increasing importance
 - More vehicles
 - Self driving cars

Linguistic networks

- Networks of words
- Show similarities between languages
- Show differences between languages
- Document analysis

Business and management and marketing

- Business
 - What makes a restaurant successful?
 - Nearby restaurants?
 Community of customers?
- Marketing/management
 - Who are the influential people in spread of ideas/products?

Other networks

- Chemistry/biology
 - Interactions between chemical
 - Interactions between species
 - Ecological networks
- Finance/economies
 - Dependencies between institutions
 - Resilience and fragility
- Neural (Brain) networks

Why Network science? Why Now?

- Many of these systems have similar underlying characteristics
- Network science studies these general properties
- We now have many tools: algorithms, graph theory, optimization...
- Last decade or so a lot of network-type data has become available
 - www search engines etc
 - Location data: traffic and road data
- We can now look at this data and search for theories

Network analysis in data science

- Data getting more complex
- Many types of data are not points in R^d space
 - Data carry relations networks
 - Simple classification inadequate
 - E.g. data from social network or social media, www, IoT and sensor networks

Network analysis in data science

- Networks reflect the shape of data
- Connect nearby points with edges
- Analyse resultant network

The breadth of network science

- Tied to real systems
 - Anything in network science has impact on multiple real things
- Data driven
 - Need good data-handling techniques, optimizations, approximations
 - Get to learn data driven thinking
 - Study of algorithms, data mining
- Mathematical and rigorous
 - Emphasis on precise understanding, provable properties.
 Clear thinking.
 - Exactly what is true and what is not, what works and what doesn't, in exactly which circumstances

- Random graphs: the most basic, unstructured simple networks
 - What are their properties? What can we expect?
 - Erdos renyi graphs
 - Construction of random graphs
- Power law and scale free networks
 - Distribution of degrees of nodes
 - Power law occurs in many places: www, social nets etc..
 - What is the process that generates this? How do we know that it is the right process?

- Small world networks
 - Milgram's experiment
 - What is the deal with six degrees of separation
 - How are people so well connected?
- Web graphs and ranking of web pages
 - Google's origins and pagerank
 - How do you identify important web pages?
 - Analysis of the algorithm: do they converge? Can they give a clear answer?
- Spectral methods

- Strong and weak ties in social networks, social capital
 - How does information spread in a social network?
 - How do you make use of your position in a network?
 - Which contacts are useful in finding jobs? Why?
- What are the communities (close knit groups)?
 - How do communities affect social processes?
 - Clustering/unsupervised learning

- Cascades things that spread
 - Node failures
 - Epidemics, diseases
 - Innovation products, ideas, technologies
- How can we maximize a spread?
 - Who are the most influential nodes?
 - How can we identify them?
 - Submodular optimization

- Shape of networks
 - What is the shape of internet?
 - What are bow tie and tree-like networks?
 - What does it mean to say a network is tree-like?

The course

- Is not about:
 - Facebook, Whatsapp, Linkedin, Twitter...
 - Making apps

The course

- Is about:
 - Understanding mathematical measures that define properties of networks
 - Mathematics and algorithms to compute and analyze these properties
- Is not machine learning
 - But related to it

Our approach

- Clearly define different aspects of networks
 - What is a random graph?
 - What exactly is a small world?
 - How do you define 'community' or clustering in networks?
 - How do you define influential nodes?
- Design algorithms to analyze networks
 - Find communities, find influential nodes
 - Understand the properties of these algorithms
 - When do they work, when do they not work
 - Why?

Our approach

- Test ideas on real and artificial networks
 - Data driven understanding
 - Do real networks have the properties predicted by theory?
 - Do the algorithms work as well as expected?

Project

- 1 project. 40% of marks
- Given: Around Oct 5 to 10.
- Due: Around Nov 15.
- Choose from one of several projects
- Objective: Try something new in network science.
- Given problem statement, try your own ideas on how to solve it
 - No unique solution.
- We will give you a topic. You have to
 - Formulate it as a precise network problem
 - Find a way to solve it
 - You are allowed to try different problems and approaches
- Submit code and ≈3 page report
- Marked on originality, rigor of work (proper analysis/experiments), clarity of presentation

Possible types of projects

- Given a dataset from a particular social/ technological area, find a way to solve a particular problem
 - Devise a prediction method
 - Find interesting properties of specific networks
 - Design of efficient algorithms to compute network properties
- Programming is useful for evaluation/ experiments
 - We will use python in class (recommended)
 - You can use other languages (python, java, c, c++)
- Theoretical work is also great. But must have analytical approach such as proofs

Theory Exam

- Standard exam, 60% of marks
- Explain phenomena, devise mechanisms, prove properties...
- Last year's paper online..

Lectures

- Slides will be uploaded after each class
- Lecture notes will be given covering some material left over
- Exercise problems will be given covering important material
- Ipython (jupyter) notebooks will be uploaded
- Do the exercise problems to make sure
 - You understand things
 - You can solve analytic problems
- Solutions will be given later for important problems
 - Check that your solution is right
 - Check that your writing is sufficiently precise

Pre-requisites

- Probability, distributions, set theory
- Basic graph theory and algorithms
 - Graphs, trees, DFS, BFS, minimum spanning trees, sorting
- Asymptotic notations: Big O.
- Linear algebra
 - Matrix operations
 - (preferably) Eigen vectors and eigen values
- Sample problems online

Course learning expectations

- Formulate problems
- Plan and execute original projects
- Use programming to analyze network data
- Use theoretical analysis (maths) to understand ideas/models
- Present analysis and ideas
 - Precisely
 - Unambiguously
 - Clearly
- Have fun playing with ideas!