Spectral Graph Theory

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

Spectral methods

- Understanding a graph using eigen values and eigen vectors of the matrix
- We saw:
- Ranks of web pages: components of 1st eigen vector of suitable matrix
- Pagerank or HITS are algorithms designed to compute the eigen vector
- Today: other ways spectral methods help in network analysis

Laplacian

- $L=D-A$ [D is the diagonal matrix of degrees]
- An eigen vector has one value for each node
- We are interested in properties of these values

Application 1: Drawing a graph

- Problem: Computer does not know what a graph is supposed to look like
- A graph is a jumble of edges
- Consider a grid graph:
- We want it drawn nicely

Graph embedding

- Find positions for vertices of a graph in low dimension (compared to n)
- Common objective: Preserve some properties of the graph e.g. approximate distances between vertices
- Useful in visualization
- Finding approximate distances
- Using eigen vectors
- One eigen vector gives x values of nodes
- Other gives y-values of nodes ... etc

Draw with $v[1]$ and $v[2]$

- Suppose v[0], v[1], v[2]... are eigen vectors
- Sorted by increasing eigen values
- Plot graph using $\mathrm{X}=\mathrm{v}[1]$, $\mathrm{Y}=\mathrm{v}$ [2]
- Produces the grid

Intuitions: the 1-D case

- Suppose we take the jth eigen vector of a chain
- What would that look like?
- We are going to plot the chain along x-axis
- The y axis will have the value of the node in the jth eigen vector
- We want to see how these rise and fall

Observations

- $\mathrm{j}=0$
- $\mathrm{j}=1$
- $\mathrm{j}=2$
- $\mathrm{j}=3$
- $\mathrm{j}=19$

For All j

Observations

- In Dim 1 grid:
$-v[1]$ is monotone
$-v[2]$ is not monotone
- In dim 2 grid:
- both v[1] and v[2] are monotone in suitable
 directions
- For low values of j :
- Nearby nodes have similar values
- Useful for embedding

Application 2: Colouring

- Colouring: Assign colours to vertices, such that neighboring vertices do not have same colour
- E.g. Assignment of radio channels to wireless nodes. Good colouring reduces interference
- Idea: High eigen vectors give dissimilar values to nearby nodes

- Use for colouring!

Application 3: Cuts/segmentation/ clustering

- Find the smallest 'cut'
- A small set of edges whose removal disconnects the graph

- Clustering, community detection...

Clustering/community detection

- $\mathrm{v}[1]$ tends to stretch the narrow connections: discriminates different communities

Clustering: community detection

- More communities
- Need higher dimensions

- Warning: it does not always work so cleanly
- In this case, the data is very symmetric

Image segmentation

Shi \& malik '00

$\operatorname{weight}(i, j) \approx e^{-\left(p x_{i}-p x_{j}\right)^{2}}$

Laplacian matrix

- Imagine a small and different quantity of heat at each node (say, in a metal mesh)
- we write a function $u: u(i)=$ heat at i
- This heat will spread through the mesh/graph
- Question: how much heat will each node have after a small amount of time?
- "heat" can be representative of the probability of a random walk being there

Heat diffusion

- Suppose nodes i and j are neighbors
- How much heat will flow from ito j ?

Heat diffusion

- Suppose nodes i and j are neighbors
- How much heat will flow from i to j?
- Proportional to the gradient:
$-u(i)-u(j)$
- this is signed: negative means heat flows into i

Heat diffusion

- If i has neighbors $\mathrm{j} 1, \mathrm{j} 2 . .$. .
- Then heat flowing out of i is:

$$
\begin{aligned}
& u(i)-u(j 1)+u(i)-u(j 2)+u(i)-u(j 3)+\ldots \\
& \text { degree }(i) * u(i)-u(j 1)-u(j 2)-u(j 3)-\ldots .
\end{aligned}
$$

- Hence L = D - A

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The heat equation

$$
\frac{\partial u}{\partial t}=L(u)
$$

- The net heat flow out of nodes in a time step
- The change in heat distribution in a small time step
- The rate of change of heat distribution

The smooth heat equation

- The smooth Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

- The smooth heat equation:

$$
\Delta f=\frac{\partial f}{\partial t}
$$

Heat flow

- Will eventually converge of $\mathrm{v}[0]$: the zeroth eigen vector, with eigen value $\lambda_{0}=0$
- $\mathrm{v}[0]$ is a constant: no more flow!

$$
\mathrm{v}[0]=\text { const }
$$

Laplacian

- Changed implied by L on any input vector can be represented by sum of action of its eigen vectors (we saw this last time for $M M^{T}$)
- $\mathrm{v}[0]$ is the slowest component of the change
- With multiplier $\lambda_{0}=0$
- $v[1]$ is slowest non-zero component
- with multiplier λ_{1}

Spectral gap

- $\lambda_{1}-\lambda_{0}$
- Determines the overall speed of change
- If the slowest component v[1] changes fast
- Then overall the values must be changing fast
- Fast diffusion
- If the slowest component is slow
- Convergence will be slow
- Examples:
- Expanders have large spectral gaps
- Grids and dumbbells have small gaps ~ $1 / n$

Application 4: isomorphism testing

- Eigen values different implies graphs are different
- Though not necessarily the other way

Spectral methods

- Wide applicability inside and outside networks
- Related to many fundamental concepts
- PCA
- SVD
- Random walks, diffusion, heat equation...
- Results are good many times, but not always
- Relatively hard to give provable properties
- Inefficient: eig. computation costly on large matrix
- (Somewhat) efficient methods exist for more restricted problems
- e.g. when we want only a few smallest/largest eigen vectors

