
Spectral	Graph	Theory	
	

Social	and	Technological	Networks	

Rik	Sarkar	
	

University	of	Edinburgh,	2016.	



Spectral	methods	

•  Understanding	a	graph	using	eigen	values	and	
eigen	vectors	of	the	matrix	

•  We	saw:		
•  Ranks	of	web	pages:	components	of	1st	eigen	
vector	of	suitable	matrix	

•  Pagerank	or	HITS	are	algorithms	designed	to	
compute	the	eigen	vector	

•  Today:	other	ways	spectral	methods	help	in	
network	analysis	



Laplacian	

•  L	=	D	–	A			[D	is	the	diagonal	matrix	of	degrees]	

•  An	eigen	vector	has	one	value	for	each	node	
•  We	are	interested	in	properRes	of	these	
values	

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



ApplicaRon	1:	Drawing	a	graph	

•  Problem:	Computer	does	
not	know	what	a	graph	is	
supposed	to	look	like	

•  A	graph	is	a	jumble	of	
edges	

•  Consider	a	grid	graph:	
•  We	want	it	drawn	nicely	



Graph	embedding	

•  Find	posiRons	for	verRces	of	a	graph	in	low	
dimension	(compared	to	n)	

•  Common	objecRve:	Preserve	some	properRes	of	
the	graph	e.g.	approximate	distances	between	
verRces	
– Useful	in	visualizaRon	
–  Finding	approximate	distances		

•  Using	eigen	vectors	
– One	eigen	vector	gives	x	values	of	nodes	
– Other	gives	y-values	of	nodes	…	etc	



Draw	with	v[1]	and	v[2]	

•  Suppose	v[0],	v[1],	v[2]…	
are	eigen	vectors	
– Sorted	by	increasing	eigen	
values	

•  Plot	graph	using	X=v[1],	
Y=v[2]	

•  Produces	the	grid	



IntuiRons:	the	1-D	case	

•  Suppose	we	take	the	jth	eigen	vector	of	a	
chain		

•  What	would	that	look	like?		
•  We	are	going	to	plot	the	chain	along	x-axis	
•  The	y	axis	will	have	the	value	of	the	node	in	
the	jth	eigen	vector		

•  We	want	to	see	how	these	rise	and	fall	



ObservaRons	
•  j	=	0	

•  j=1	

•  j=2	

•  j	=3	

•  j	=	19	



For	All	j	



ObservaRons	

•  In	Dim	1	grid:	
–  v[1]	is	monotone		
–  v[2]	is	not	monotone		

•  In	dim	2	grid:		
–  both	v[1]	and	v[2]	are	
monotone	in	suitable	
direcRons		

•  For	low	values	of	j:	
– Nearby	nodes	have	similar	
values	
•  Useful	for	embedding	



ApplicaRon	2:	Colouring	
•  Colouring:	Assign	colours	to	
verRces,	such	that	
neighboring	verRces	do	not	
have	same	colour	
–  E.g.	Assignment	of	radio	
channels	to	wireless	nodes.	
Good	colouring	reduces	
interference	

•  Idea:	High	eigen	vectors	give	
dissimilar	values	to	nearby	
nodes	

•  Use	for	colouring!	



ApplicaRon	3:	Cuts/segmentaRon/
clustering	

•  Find	the	smallest	‘cut’	
•  A	small	set	of	edges	
whose	removal	
disconnects	the	graph	

•  Clustering,	community	
detecRon…		



Clustering/community	detecRon	

•  v[1]	tends	to	stretch	
the	narrow	
connecRons:	
discriminates	
different	
communiRes		



Clustering:	community	detecRon	

•  More	communiRes	
•  Need	higher	
dimensions	

•  Warning:	it	does	not	
always	work	so	cleanly	

•  In		this	case,	the	data	
is	very	symmetric	



Image	segmentaRon	
Shi	&	malik	’00	



Laplacian	matrix	

•  Imagine	a	small	and	different	quanRty	of	heat	
at	each	node	(say,	in	a	metal	mesh)		

•  we	write	a	funcRon	u:	u(i)	=	heat	at	i	
•  This	heat	will	spread	through	the	mesh/graph	
•  QuesRon:	how	much	heat	will	each	node	have	
ajer	a	small	amount	of	Rme?	

•  “heat”	can	be	representaRve	of	the	
probability	of	a	random	walk	being	there	



Heat	diffusion	

•  Suppose	nodes	i	and	j	are	neighbors	
– How	much	heat	will	flow	from	i	to	j?		



Heat	diffusion	

•  Suppose	nodes	i	and	j	are	neighbors	
•  How	much	heat	will	flow	from	i	to	j?		
•  ProporRonal	to	the	gradient:		
– u(i)	-	u(j)		
–  this	is	signed:	negaRve	means	heat	flows	into	i	



Heat	diffusion	

•  If	i	has	neighbors	j1,	j2….	
•  Then	heat	flowing	out	of	i	is:	

u(i)	-	u(j1)		+		u(i)	-	u(j2)	+	u(i)	-	u(j3)	+	…	
degree(i)*u(i)	-	u(j1)	-	u(j2)	-	u(j3)	-	….	

•  Hence	L	=	D	-	A	



The	heat	equaRon	

•  The	net	heat	flow	out	of	nodes	in	a	Rme	step	
•  The	change	in	heat	distribuRon	in	a	small	Rme	
step	
– The	rate	of	change	of	heat	distribuRon	

@u

@t
= L(u)



The	smooth	heat	equaRon	

•  The	smooth	Laplacian:	

•  The	smooth	heat	equaRon:	

�f =
@f

@t



Heat	flow	

•  Will	eventually	converge	of	
v[0]	:	the	zeroth	eigen	
vector,	with	eigen	value		

•  v[0]	is	a	constant:	no	more	
flow!	

�0 = 0

v[0]	=	const	



Laplacian	
•  Changed	implied	by	L	on	any	
input	vector	can	be	represented	
by	sum	of	acRon	of	its	eigen	
vectors	(we	saw	this	last	Rme	
for	MMT)	

•  v[0]	is	the	slowest	component	
of	the	change		
– With	mulRplier	λ0=0	

•  v[1]	is	slowest	non-zero	
component	
– with	mulRplier	λ1	



Spectral	gap	
•  λ1	–	λ0	

•  Determines	the	overall	speed	of	change	
•  If	the	slowest	component		v[1]		changes	fast	
–  Then	overall	the	values	must	be	changing	fast	
–  Fast	diffusion	

•  If	the	slowest	component	is	slow	
–  Convergence	will	be	slow	

•  Examples:		
–  Expanders	have	large	spectral	gaps	
–  Grids	and	dumbbells	have	small	gaps	~	1/n	



ApplicaRon	4:	isomorphism	tesRng	

•  Eigen	values	different	implies	graphs	are	
different	

•  Though	not	necessarily	the	other	way	



Spectral	methods	
•  Wide	applicability	inside	and	outside	networks	
•  Related	to	many	fundamental	concepts	

–  PCA	
–  SVD	

•  Random	walks,	diffusion,	heat	equaRon…	
•  Results	are	good	many	Rmes,	but	not	always	
•  RelaRvely	hard	to	give	provable	properRes	
•  Inefficient:	eig.	computaRon	costly	on	large	matrix	
•  (Somewhat)	efficient	methods	exist	for	more	restricted	

problems	
–  e.g.	when	we	want	only	a	few	smallest/largest	eigen	vectors		


