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Clustering	

•  A	core	problem	of	machine	learning:	
– Which	items	are	in	the	same	group?	

•  Iden2fies	items	that	are	similar	rela2ve	to	rest	
of	data	

•  Simplifies	informa2on	by	grouping	similar	
items	
– Helps	in	all	types	of	other	problems	



Clustering	
•  Outline	approach:	
•  Given	a	set	of	items	
–  Define	a	distance	between	them	

•  E.g.	Euclidean	distance	between	points	in	a	plane;	Euclidean	
distance	between	other	aQributes;	path	lengths	in	a	network;	2e	
strengths	in	a	network…	

–  Determine	a	grouping	that	op2mises	some	func2on	
(prefers	‘close’	items	in	same	group).	

•  Reference	for	clustering:		
–  Charu	Aggarwal:	The	Data	Mining	Textbook,	Springer	
–  Free	on	Springer	site	(from	university	network)	



K-means	clustering	

•  There	are	n	items	
•  Select	k	‘centers’		
– May	be	random	k	loca2ons	in	space	
– May	be	loca2on	of	k	of	the	items	selected	randomly		
– May	be	chosen	according	to	some	method	

•  Iterate	2ll	convergence:		
– Assign	each	item	to	the	cluster	for	its	closest	center	
–  Recompute	loca2on	of	center	as	the	mean	loca2on	of	
all	elements	in	the	cluster	

–  Repeat		



K	means:	discussion	
•  Tries	to	minimise	sum	of	distances	of	items	to	cluster	

centers	
–  Computa2onally	hard	problem	
–  Algorithm	gives	local	op2mum	

•  Depends	on	ini2alisa2on	(star2ng	set	of	centers)	
–  Can	give	poor	results	
–  Slow	speed	

•  The	right	‘k’	may	be	unknown	
–  Possible	strategy:	try	different	possibili2es	and	take	the	best	

•  Can	be	improved	by	heuris2cs	like	choosing	centers	
carefully	
–  E.g.	choosing	centers	to	be	as	far	apart	as	possible:	choose	one,	
choose	point	farthest	to	it,	choose	point	farthest	to	both	
(maximise	min	distance	to	exis2ng	set	etc)…	

–  Try	mul2ple	2mes	and	take	best	result..	



K-medoids	

•  Similar,	but	now	each	center	must	be	one	of	
the	given	items	
–  In	each	cluster,	find	the	item	that	is	the	best	
‘center’	and	repeat	

•  Useful	when	there	is	no	ambient	space	
– E.g.	A	distance	between	items	can	be	computed,	
but	they	are	not	in	any	par2cular	Euclidean	space,	
so	the	‘center’	is	not	a	meaningful	point	



Hierarchical	clustering	

•  Hierarchically	group	items	



Hierarchical	clustering	
•  Top	down	(divisive):	
–  Start	with	everything	in	1	
cluster	

– Make	the	best	division,	and	
repeat	in	each	subcluster	

•  BoQom	up	(agglomera2ve):	
–  Start	with	n	different	clusters	
– Merge	two	at	a	2me	by	
finding	pairs	that	give	the	
best	improvement	



Hierarchical	clustering	
•  Gives	many	op2ons	for	a	
flat	clustering	

•  Problem:	what	is	the	right	
place	to	‘cut’	the	
dendogram?	



Density	based	clustering	

•  Group	dense	regions	
together	

•  Less	dependent	on	
distance	
configura2ons	

•  BeQer	at	non-linear	
separa2ons	

•  Works	with	unknown	
number	of	clusters	



Density	based	clustering	
•  Density	at	a	data	point:	
– Number	of	data	points	within	radius	Eps	

•  A	core	point:		
– Point	with	density	at	least	τ	



DBSCAN:	Discussions	

•  Requires	knowledge	of	suitable	radius	and	
density	parameters	(Eps	and	τ)	

•  Does	not	allow	for	possibility	that	different	
clusters	may	have	different	densi2es	



Course	and	projects	

•  Office	hours	
– Wednesdays	as	usual	
–  This	week,	also:	

•  Tuesday	&	Thursday	2pm	–	3pm	

•  Report	wri2ng	
– Highlight	whatever	is	important/interes2ng	

•  Interes2ng	result,	interes2ng	technique,	anything	unusual..	
–  State	it	right	at	the	beginning.	Clear	and	concise.	
– Make	it	easy	to	find	a	reason	to	give	you	marks!	



Communi2es	

•  Groups	of	friends	
•  Colleagues/collaborators	
•  Web	pages	on	similar	topics	
•  Biological	reac2on	groups	
•  Similar	customers/users	…	



Other	applica2ons	

•  A	coarser	representa2on	of	networks	
•  One	or	more	meta-node	for	each	community	
•  Iden2fy	bridges/weak-links	
•  Structural	holes	



Community	detec2on	in	networks	

•  A	simple	strategy:	
– Choose	a	suitable	distance	measure	based	on	
available	data		
•  E.g.	Path	lengths;	distance	based	on	inverse	2e	
strengths;	size	of	largest	enclosing	group	or	common	
aQribute;	distance	in	a	spectral	(eigenvector)	
embedding;	etc..	

– Apply	a	standard	clustering	algorithm	



Clustering	is	not	always	suitable	in	
networks	

•  Small	world	networks	have	small	diameter	
– And	some2me	integer	distances	
– A	distance	based	method	does	not	have	a	lot	of	
op2on	to	represent	similari2es/dissimilari2es	

•  High	degree	nodes	are	common	
– Connect	different	communi2es	
– Hard	to	separate	communi2es	

•  Edge	densi2es	vary	across	the	network	
– Same	threshold	does	not	work	well	everywhere	



Defini2ons	of	communi2es	

•  Varies.	Depending	on	applica2on	

•  General	idea:	Dense	subgraphs:	More	links	
within	community,	few	links	outside	

•  Some	types	and	considera2ons:	
– Par22ons:	Each	node	in	exactly	one	community	
– Overlapping:	Each	node	can	be	in	mul2ple	
communi2es	



Finding	dense	subgraphs	is	hard	in	
general	

•  Finding	largest	clique		
– NP-hard	
–  Computa2onally	intractable	
–  Polynomial	2me	(efficient)	algorithms	unlikely	to	exist	

•  Decision	version:	Does	a	clique	of	size	k	exist?		
– NP-complete	
–  Computa2onally	intractable	
–  Polynomial	2me	(efficient)	algorithms	unlikely	to	exist	



Dense	subgraphs:	Few	preliminary	
defini2ons	

•  For	S,	T	subgraphs	of	V	
•  e(S,T):	Set	of	edges	from	S	to	T	
– e(S)	=	e(S,S):	Edges	within	S	

•  dS(v)	:	number	of	edges	from	v	to	S	
•  Edge	density	of	S	:	|e(S)|/|S|	
– Largest	for	complete	graphs	or	cliques	



Dense	subgraph	

•  The	subgraph	with	largest	edge	density	
•  There	also	exists	a	decision	version:		
–  Is	there	a	subgraph	with	edge	density	>	α		

•  Can	be	solved	using	Max	Flow	algorithms	
– O(n2m)	:	inefficient	in	large	datasets	
–  Finds	the	one	densest	subgraph	

•  Variant:	Find	densest	S	containing	given	subset	X	
•  Other	versions:	Find	subgraphs	size	k	or	less	
•  NP-hard	



Efficient	approxima2on	for	finding	
dense	S	containing	X	

•  Gives	a	1/2	approxima2on	
•  Edge	density	of	output	S	set	is	at	least	half	of	
op2mal	set	S*	

•  (Proof	in	Kempe	2011).	



Modularity	

•  We	want	to	find	the	many	communi2es,	not	
just	one	

•  Clustering	a	graph	
•  Problem:	What	is	the	right	clustering?	
•  Idea:	Maximize	a	quan2ty	called	modularity	



Modularity	of	subset	S	

•  Given	graph	G	
•  Consider	a	random	G’	graph	with	same	node	
degrees	(remember	configura2on	model)	
– Number	of	edges	in	S	in	G:	|e(S)|G	
–  Expected	number	of	edges	in	S	in	G’:	E[|e(S)|G’]	
– Modularity	of	S:	|e(S)|	-	E[|e(S)|G’]	
– More	coherent	communi2es	have	more	edges	inside	
than	would	be	expected	in	a	random	graph	with	same	
degrees	

– Note:	modularity	can	be	nega2ve	



Modularity	of	a	clustering	

•  Take	a	par22on	(clustering)	of	V:		
•  Write	d(Si)	for	sum	of	degrees	of	all	nodes	in	Si	
•  Can	be	shown	that	E[|e(S)|G’]	~	d(Si)2	
•  Defini2on:	Sum	over	the	par22on:		



Modularity	based	clustering	
•  Modularity	is	meant	for	use	more	as	a	measure	of	quality,	not	so	

much	as	a	clustering	method	

•  Finding	clustering	with	highest	modularity	is	NP-hard	
•  Heuris2c:		

–  Use	modularity	matrix	
–  Take	its	first	eigen	vector	

•  Note:	Modularity	is	a	rela2ve	measure	for	comparing	community	
structure.		

•  Not	en2rely	clear	in	which	cases	it	may	or	may	not	give	good	
results	

•  A	threshold	of	0.3	or	more	is	some2mes	considered	to	give	good	
clustering	



•  Can	be	used	as	a	stopping	criterion	(or	finding	
right	level	of	par22oning)	in	other	methods	
– Eg.	Girvan-newman	



Karate	club	hierarchic	clustering	

•  Shape	of	nodes	gives	actual	split	in	the	club	
due	to	internal	conflicts	
– Newman	2003	




