Clustering and community detection

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.
Clustering

• A core problem of machine learning:
 – Which items are in the same group?
• Identifies items that are similar relative to rest of data
• Simplifies information by grouping similar items
 – Helps in all types of other problems
Clustering

• Outline approach:
 • Given a set of items
 – Define a distance between them
 • E.g. Euclidean distance between points in a plane; Euclidean distance between other attributes; path lengths in a network; tie strengths in a network...
 – Determine a grouping that optimises some function (prefers ‘close’ items in same group).

• Reference for clustering:
 – Charu Aggarwal: The Data Mining Textbook, Springer
 – Free on Springer site (from university network)
K-means clustering

• There are n items
• Select k ‘centers’
 – May be random k locations in space
 – May be location of k of the items selected randomly
 – May be chosen according to some method
• Iterate till convergence:
 – Assign each item to the cluster for its closest center
 – Recompute location of center as the mean location of all elements in the cluster
 – Repeat
K means: discussion

• Tries to minimise sum of distances of items to cluster centers
 – Computationally hard problem
 – Algorithm gives local optimum
• Depends on initialisation (starting set of centers)
 – Can give poor results
 – Slow speed
• The right ‘k’ may be unknown
 – Possible strategy: try different possibilities and take the best
• Can be improved by heuristics like choosing centers carefully
 – E.g. choosing centers to be as far apart as possible: choose one, choose point farthest to it, choose point farthest to both (maximise min distance to existing set etc)...
 – Try multiple times and take best result..
K-medoids

• Similar, but now each center must be one of the given items
 – In each cluster, find the item that is the best ‘center’ and repeat

• Useful when there is no ambient space
 – E.g. A distance between items can be computed, but they are not in any particular Euclidean space, so the ‘center’ is not a meaningful point
Hierarchical clustering

- Hierarchically group items
Hierarchical clustering

• Top down (divisive):
 – Start with everything in 1 cluster
 – Make the best division, and repeat in each subcluster

• Bottom up (agglomerative):
 – Start with n different clusters
 – Merge two at a time by finding pairs that give the best improvement

(a) Dendrogram
Hierarchical clustering

- Gives many options for a flat clustering
- Problem: what is the right place to ‘cut’ the dendogram?
Density based clustering

- Group dense regions together
- Less dependent on distance configurations
- Better at non-linear separations
- Works with unknown number of clusters
Density based clustering

• Density at a data point:
 – Number of data points within radius Eps

• A core point:
 – Point with density at least τ

Algorithm DBSCAN(Data: \mathcal{D}, Radius: Eps, Density: τ)
begin
 Determine core, border and noise points of \mathcal{D} at level (Eps, τ);
 Create graph in which core points are connected
 if they are within Eps of one another;
 Determine connected components in graph;
 Assign each border point to connected component
 with which it is best connected;
 return points in each connected component as a cluster;
end
DBSCAN: Discussions

- Requires knowledge of suitable radius and density parameters (Eps and \(\tau \))
- Does not allow for possibility that different clusters may have different densities
Course and projects

• Office hours
 – Wednesdays as usual
 – This week, also:
 • Tuesday & Thursday 2pm – 3pm

• Report writing
 – Highlight whatever is important/interesting
 • Interesting result, interesting technique, anything unusual..
 – State it right at the beginning. Clear and concise.
 – Make it easy to find a reason to give you marks!
Communities

- Groups of friends
- Colleagues/collaborators
- Web pages on similar topics
- Biological reaction groups
- Similar customers/users ...
Other applications

• A coarser representation of networks
• One or more meta-node for each community
• Identify bridges/weak-links
• Structural holes
Community detection in networks

• A simple strategy:
 – Choose a suitable distance measure based on available data
 • E.g. Path lengths; distance based on inverse tie strengths; size of largest enclosing group or common attribute; distance in a spectral (eigenvector) embedding; etc..
 – Apply a standard clustering algorithm
Clustering is not always suitable in networks

• Small world networks have small diameter
 – And sometime integer distances
 – A distance based method does not have a lot of option to represent similarities/dissimilarities

• High degree nodes are common
 – Connect different communities
 – Hard to separate communities

• Edge densities vary across the network
 – Same threshold does not work well everywhere
Definitions of communities

• Varies. Depending on application

• General idea: **Dense subgraphs**: More links within community, few links outside

• Some types and considerations:
 – Partitions: Each node in exactly one community
 – Overlapping: Each node can be in multiple communities
Finding dense subgraphs is hard in general

• Finding largest clique
 – NP-hard
 – Computationally intractable
 – Polynomial time (efficient) algorithms unlikely to exist

• Decision version: Does a clique of size k exist?
 – NP-complete
 – Computationally intractable
 – Polynomial time (efficient) algorithms unlikely to exist
Dense subgraphs: Few preliminary definitions

- For S, T subgraphs of V
- $e(S,T)$: Set of edges from S to T
 - $e(S) = e(S,S)$: Edges within S
- $d_S(v)$: number of edges from v to S
- Edge density of S: $|e(S)|/|S|$
 - Largest for complete graphs or cliques
Dense subgraph

• The subgraph with largest edge density
• There also exists a decision version:
 – Is there a subgraph with edge density > α
• Can be solved using Max Flow algorithms
 – $O(n^2m)$: inefficient in large datasets
 – Finds the one densest subgraph
• Variant: Find densest S containing given subset X
• Other versions: Find subgraphs size k or less
• NP-hard
Efficient approximation for finding dense S containing X

Let $G_n \leftarrow G$.

for $k = n$ downto $|X| + 1$ do

Let $v \notin X$ be the lowest degree node in $G_k \setminus X$.

Let $G_{k-1} \leftarrow G_k \setminus \{v\}$.

Output the densest subgraph among $G_n, \ldots, G_{|X|}$.

• Gives a 1/2 approximation

• Edge density of output S set is at least half of optimal set S^*

• (Proof in Kempe 2011).
Modularity

• We want to find the many communities, not just one
• Clustering a graph
• Problem: What is the right clustering?
• Idea: Maximize a quantity called *modularity*
Modularity of subset S

- Given graph G
- Consider a random G' graph with same node degrees (remember configuration model)
 - Number of edges in S in G: $|e(S)|_G$
 - Expected number of edges in S in G': $E[|e(S)|_{G'}]$
 - Modularity of S: $|e(S)| - E[|e(S)|_{G'}]$
 - More coherent communities have more edges inside than would be expected in a random graph with same degrees
 - Note: modularity can be negative
Modularity of a clustering

• Take a partition (clustering) of V: $\mathcal{P} = \{S_1, \ldots, S_k\}$
• Write $d(S_i)$ for sum of degrees of all nodes in S_i
• Can be shown that $E[|e(S)|_{G'}] \sim d(S_i)^2$
• Definition: Sum over the partition:

$$q(\mathcal{P}) = \frac{1}{m} \sum_i |e(S_i)| - \frac{1}{4m} d(S_i)^2.$$
Modularity based clustering

• Modularity is meant for use more as a measure of quality, not so much as a clustering method

• Finding clustering with highest modularity is NP-hard
• Heuristic:
 – Use modularity matrix
 – Take its first eigen vector
• Note: Modularity is a relative measure for comparing community structure.
• Not entirely clear in which cases it may or may not give good results
• A threshold of 0.3 or more is sometimes considered to give good clustering
• Can be used as a stopping criterion (or finding right level of partitioning) in other methods
 – Eg. Girvan-newman
Karate club hierarchic clustering

• Shape of nodes gives actual split in the club due to internal conflicts
 – Newman 2003