There are two ways of writing the power law (see Kempe 2011). Suppose X is the variable in question, then:

- $\Pr[X \geq x] = cx^{-\alpha}$
- $\Pr[X = x] = c'x^{-\alpha'}$

Exercise 0.1. Express (c', α') in terms of (c, α) and vice versa.

Exercise 0.2. Consider the preferential attachment model discussed in class. In what ways do you think it is different from real power law networks like the www and others?

Exercise 0.3. It is the in-degrees of nodes in www that are expected of have power law distribution. The code we tried in class took all degrees. Write your version to plot the in-degrees.

* **Exercise 0.4.** Show that preferential attachment networks have small diameter. (Take all edges as undirected.)

* **Exercise 0.5.** Do preferential attachment networks have expansion above a constant? (Take all edges as undirected.)

Exercise 0.6. If the number of neighbors k is a constant in a Watts-Strogatz graph, (whereas n is not a constant – the graph can be very large), and the fraction of rewired edges β is also a constant, show that there exists a constant c such that for any vertex u, the expected clustering coefficient is greater than c.

Exercise 0.7. In Kleinberg’s model, suppose instead of a 2D grid, we started with a 3D grid. What do you think is the distribution needed for decentralized search to work with the same $\log^2 n$ guarantee?

Exercise 0.8. In an $n \times n$ grid, check that the number of nodes at graph distance exactly d from any node is $\Theta(d)$, and number of nodes in the ball $B_d(x)$ is $\Theta(d^2)$. What is the shape of this ball?

Exercise 0.9. Suppose that a long link from node u will connect to node v with probability proportional to $\frac{1}{d^2}$ where d is the grid distance between u and v. Show that:
1. The proportionality constant for any node is $\Theta(\log n)$.

2. The probability that a long link from u has its other end point in $B_{d/2}(v)$ is $\frac{1}{\Theta(\log n)}$.

Exercise 0.10. Do the properties hold if the base graph is a balanced binary tree?