Submodular optimization: Maximizing Cascades

Rik Sarkar
Projects

• Thanks for the proposals. We will try to give comments on piazza. Please continue your work till then

• If upload to piazza did not work, please try again

• Guidelines for final submission available soon
Projects: Main points:

• There is no “right answer”. We don’t know the solutions

• We are happy to discuss with you and help you make the project better

• You will be marked for trying interesting ideas, justifying them and comparing and discussing results

• Don’t be afraid to try risky/new ideas that may fail
Recap: Contagion, cascades, influence

• Contagion: something that spreads due to influence of neighbors (cascading)

• Technology, product, innovation, idea, disease...

• The spreading process at a node is often called infection, activation etc…
Recap

• Tight knit communities stop the cascade

• Carefully picking some nodes to activate can cause a large cascade
α - strong communities

- A set S of nodes forms an α-strong (or α-dense) community if for each node v in S, $d_S(v) \geq \alpha d(v)$

- That is, at least α fraction of neighbors of each node is within the community
Theorem

• A cascade with contagion threshold q cannot penetrate an α-dense community with $\alpha > 1 - q$

• Therefore, for a cascade with threshold q, and set X of initial adopters of A:

 1. If the rest of the network contains a cluster of density $> 1-q$, then the cascade from X does not result in a complete cascade

 2. If the cascade is not complete, then the rest of the network must contain a cluster of density $> 1-q$
Proof

- In Kleinberg & Easley

1. By contradiction: The first node in the cluster that converts, cannot convert.

2. If set S is exactly the set of unconverted nodes at the end, then any v in S must have $1-q$ fraction edges in S, else v would have converted.
Extensions

• The model extends to the case where each node \(v \) has

 • different \(a_v \) and \(b_v \), hence different \(q_v \)

• Exercise: What can be a form for the theorem on the previous slide for variable \(q_v \)?
Cascade capacity

- Upto what threshold q can a small set of early adopters cause a full cascade?

- definition: Small: A finite set in an infinite network
Cascade capacities

- 1-D grid:
 - capacity = $1/2$

- 2-D grid with 8 neighbors:
 - capacity $3/8$
Theorem

- No infinite network has cascade capacity > 1/2
- Show that the interface/boundary shrinks
 - Number of edges at boundary decreases at every step
- Take a node w at the boundary that converts in this step
 - w had x edges to A, y edges to B
 - q > 1/2 implies x > y
- True for all nodes
- Implies boundary edges decreases

(a) Before v and w adopt A
(b) After v and w adopt A
Other models

- Non-monotone: an infected/converted node can become un-converted

- Schelling’s model, Granovetter’s model: People are aware of choices of all other nodes (not just neighbors)
Causing large spread of cascade

• Viral marketing with restricted costs

• Suppose you have a budget of reaching k nodes

• Which k nodes should you convert to get as large a cascade as possible?
Models

• Linear contagion threshold model:
 • The model we have used: node activates to use A if benefit of using $p > q$

• Independent activation model:
 • If node u activates to use A, then u causes neighbor v to activate and use A with probability $p_{u,v}$
 • That is, every edge has an associated probability of spreading influence (like the strength of the tie)
Hardness

• In both the models, finding the exact set of k initial nodes to maximize the influence cascade is NP-Hard

• Intractable, unlikely that polynomial time algorithms exist unless P = NP
Approximation

• There is a polynomial time algorithm that spreads the cascade to \(\left(1 - \frac{1}{e} \right) \cdot OPT \) nodes

• OPT: The optimum result — in this case, the largest number of nodes reachable with a cascade starting with k nodes
• To prove this, we will use a property called submodularity

• Let us take a detour into understanding submodular functions

• After that, we will complete the proof.
Submodular functions

• Suppose function $f(x)$ represents the total benefit of selecting x
• And $f(S)$ the benefit of selecting set S
• Function f is submodular if:

$$S \subseteq T \implies f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$$
Submodular functions

\[S \subseteq T \implies \]
\[f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T) \]

• Means diminishing returns

• Selecting x gives smaller benefits if many others have been selected
Example: Sensor coverage

• Suppose you are placing sensors to monitor a region (eg. cameras, or chemical sensors etc)

• There are n possible camera locations

• Each sensor can “see” a region

• A region that is in the view of one or more sensors is covered

• With a budget of k sensors, we want to cover the largest possible area

• Function f: Area covered
Marginal gains

• Observe:

• Marginal coverage depends on other sensors in the selection
Marginal gains

- Observe:
- Marginal coverage depends on other sensors in the selection
• Observe:

• Marginal coverage depends on other sensors in the selection

• More selected sensors means less marginal gain from each individual
$S \subseteq T \implies$

$f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$
• Our Problem: select locations set of size k maximizes coverage

• NP-Hard
Greedy Approximation algorithm

• Start with empty set $S = \emptyset$

• Repeat k times:

 • Find v that gives maximum marginal gain:

 $$f(S \cup \{v\}) - f(S)$$

 • Add insert v into S
• Observation 1: Coverage function is submodular

• Observation 2: Coverage function is monotone:

• Adding more sensors always increases coverage

\[S \subseteq T \Rightarrow f(S) \leq f(T) \]
Theorem

- For monotone submodular functions, the greedy algorithm produces an \(\left(1 - \frac{1}{e} \right) \) approximation

- That is, the value \(f(S) \) of the final set is at least

\[
\left(1 - \frac{1}{e} \right) \cdot OPT
\]
Proof

• Idea:

• OPT is the max possible

• On every step there is at least one element that covers 1/k of remaining:
 • (OPT - current) * 1/k

• Greedy selects that element
Proof

- At each step coverage remaining becomes

\[
\left(1 - \frac{1}{k}\right)
\]

- Of what was remaining after previous step
Proof

• After k steps, we have remaining coverage of OPT

\[
\left(1 - \frac{1}{k}\right)^k \approx \frac{1}{e}
\]

• Fraction of OPT covered:

\[
\left(1 - \frac{1}{e}\right)
\]
• We have shown that monotone submodular maximization can be approximated using greedy selection

• To show that maximizing spread of cascading influence can be approximated:
 • We will show that the function is monotone and submodular