
Optimizing cascades &
submodular optimization

Rik Sarkar

Today

• Maximizing cascades

• Other applications of submodularity

• Network flows

• NP completeness

Recap: Selecting nodes to
activate

• We have a network of n nodes

• And a budget to activate k nodes

• Which k nodes should we activate to get the largest
cascade?

• Hard problem, we want approximate solutions

Recap: Submodular
maximization

• Submodular function f:

• Value added by an item
decreases with bigger sets

• Find the set S of size k that
maximizes f(S)

S ✓ T =)

f(S [{x})� f(S) � f(T [{x})� f(T)

Recap: Approximation

• A simple greedy algorithm:

• In next round, pick the item that gives the largest
increase in value

• For monotone submodular maximization, the
greedy algorithm gives approximation

✓
1� 1

e

◆

Cascade
• Cascade function f(S):

• Given set S of initial adopters, f(S) is the number
of final adopters

• We want to show: f(S) is submodular

• Idea: Given initial adopters S, let us consider the
set H that will be the corresponding final adopters

• H is “covered” by S

Cascade in independent
activation model

• If node u activates to use A, then u causes neighbor v to activate
and use A with probability

• pu,v

• Now suppose u has been activated

• Neighbor v will be activated with prob. pu,v

• Neighbor w will be activated with prob. pu,w etc..

• Instead of waiting for u to be activated before making the
random choices, we can make the random choices beforehand

• ie. if u is activated, then v will be activated, but w will not be
activated… etc

Cascade in independent
activation model

• We can make the random choices for u activation
beforehand.

• Tells us which edges of u are “effective” when u is “on”

• Similarly for other nodes v, x, y ….

• We know exactly which nodes will be activated as a
consequence of u being activated

• Exactly the same as “coverage” of a sensor network

• Say, c(u) is the set of nodes covered by u.

• We know exactly which nodes will be activated as
a consequence of u being activated

• Exactly the same as “coverage” of a sensor
network

• Say, c(u) is the set of nodes covered by u.

• c(S) is the set of nodes covered by a set S

• f(S) = |c(S)| is submodular

• Remember that we had made the probabilistic choices for each edge
uv:

• With probability pu,v we set the edge to be “active”: if u is activated,
v will be activated

• Let us represent the choices for all edges in the entire network be x

• We showed that given x, the function is submodular

• Now let X be the space of possibilities of all such choices

• Each element x in X contains choices for all edges

• In making the random choices beforehand, we had basically fixed x

• Now, we can sum over all possible x, weighted by their probability.

• Now, we can sum over all possible x, weighted by
their probability.

• Since non-negative linear combinations of
submodular functions are submodular, the sum is
submodular

• The approximation algorithm for submodular
maximization is an approximation for the cascade
in independent activation model with same factor

• The linear threshold model

• Node compares the fraction of
its neighbors activated to a
threshold q

• Generalization: Each edge has
a weight pu,v and total weight
for activated items must exceed
q

• Modified model (for the proof):

• Node u picks 1 neighbor v and turns on directed
edge vu (meaning v influences u)

• Edge vu is turned on with probability proportional
to pu,v

• All other edges are turned off (not used)

Theorem
• Any subset H ⊆ V has the same probability of being

covered in

• Original linear threshold model, and

• Modified model

• Proof: Omitted

• Ref: Kempe, Kleinberg, Tardos; Maximizing the spread of
infleunce through a social network, SIGKDD 03.

Applications of submodular
optimization

• Sensing the contagion

• Place sensors to detect the spread

• Find “representative elements”: Which blogs cover all
topics?

• Machine learning

• Exemplar based clustering (eg: what are good seeds?)

• Image segmentation

Sensing the contagion
• Consider a different problem:

• A water distribution system may get contaminated

• We want to place sensors such that contamination
is detected

Social sensing
• Which blogs should I read? Which twitter accounts should I follow?

• Catch big breaking stories early

• Detect cascades

• Detect large cascades

• Detect them early…

• With few sensors

• Can be seen as submodular optimization problem:

• Maximize the “quality” of sensing

• Ref: Krause, Guestrin; Submodularity and its application in
optimized information gathering, TIST 2011

Representative elements
• Take a set of Big data

• Most of these may be redundant and not
so useful

• What are some useful “representative
elements”?

• Good enough sample to understand the
dataset

• Cluster representatives

• Representative images

• Few blogs that cover main areas…

Problem with submodular
maximization

• Too expensive!

• Each iteration costs O(n): have to check each element to find the best

• Problem in large datasets

• Mapreduce style distributed computation can help

• Split data into multiple computers

• Compute and merge back results: Works for many types of
problems

• Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular
maximization: Finding representative elements in massive data. NIPS
2013.

Projects
• Office hours

• Wednesday 11 nov (tomorrow), 10:00-12:00

• Monday 16 nov, 10:00 - 12:00

• Submission guidelines to be given today (I hope..)

PhD at Edinburgh
• If you are finding the project interesting…

• CDT in datascience:

• http://datascience.inf.ed.ac.uk/

• CDT in parallelism/systems:

• http://pervasiveparallelism.inf.ed.ac.uk/

• Other PhD options:

• http://www.ed.ac.uk/informatics/postgraduate/research-degrees/phd

• For general procedure for applying, see a guideline at

• http://homepages.inf.ed.ac.uk/rsarkar/positions.html

• Ask any questions..

http://datascience.inf.ed.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk/
http://www.ed.ac.uk/informatics/postgraduate/research-degrees/phd
http://homepages.inf.ed.ac.uk/rsarkar/positions.html

Network Flows and Cuts
• Network flow problem

• Give an graph (imagine pipes/
roads)

• Nodes s, t

• Capacity c(e) on each edge e

• What is the maximum rate of
flow from s to t ?

• Solution consists of a flow value
on each edge that attains max
flow from s to t

Network flows

• Solved using Ford-Fulkerson or similar algorithms

• Complexity ~ O(nm) [ie. O(|V| * |E|)]

• or similar, depending on exact requirements etc

• Too large in large networks

Minimum cuts
• Find the set of edges with smallest

capacity that separates s and t

• Max flow min cut Theorem: The
total capacity of this smallest cut
is the max flow from s to t.

• The cut capacity function f: flow
across a cut

• Is submodular

• Min cut: Submodular minimization

• Application: Image segmentation

Complexity classes P, NP,
NP-hard

Class P
• Decision problems: A yes or no answer

• Problems that can be solved in polynomial time

• eg:

• Searching: Does element x exist in array A?

• Graph connectivity: Is G connected…

Class NP
• Some decision problems do not have known polynomial time solutions

• But given a “yes” answer, the solution can be checked in polynomial
time

• Eg.

• Vertex cover: Is there a subset S of size k in V such that every edge
has at least one end point in S?

• Does the graph contain a clique of size k ?

• Set cover: Suppose X = {S1, S2, …} is a collection of subsets of U

• is there are collection of size k that covers all elements of U?

Succinct certificates
• NP problems have succinct certificates — that can

be used to check the answer in polynomial time

• E.g.

• Vertex cover: The solution set S of size k

• Clique: The clique of size k

• Set cover the collection of size k that covers V

Problem reduction
• Convert problem 1 to a version of problem 2

• E.g. Vertex cover to set cover

• Elements U = E

• Collection of subsets: Sv = Edges on vertex v

• U can be covered by a collection of size k iff E can be covered by a
set Y in V

• Note:

• If we have a solution to Set cover, we can use it to solve vertex
cover

• The conversion from problem 1 to problem 2 is polynomial time

Classes NP-Hard and NP-
complete

• A problem X is NP hard,
if any NP problem can be
reduced to X in
polynomial time

• A problem is NP-
complete if it is both:

• In NP

• and NP-hard

Showing that a problem X is
NP-complete

• Show X is in NP

• Usually easy: Show a
succinct certificate

• Showing NP-hardness

• Idea: All NP-complete problems
are reducible to each-other!

• So, show that one known NP-
complete problem can be
reduced to X

Showing that a problem X is
NP-complete

• Take Y which is NP-complete

• Show that an instance of Y can be
reduced to an instance of X in polynomial
time

• And the solution of X can be converted
back to a solution of Y in Polynomial time

• Thus, if X has an easy (Polynomial)
solution, that can be used to solve NP-
hard problem Y

• Implies that X cannot have easy
(polynomial) solution!

NP-hardness
• Note that an NP-hard problem need not be a decision

problem it can be an optimization problem

• E.g.

• Find largest clique

• Find smallest set cover

• Find longest path…

• Proving the NP-hardness part is anyway the difficult issue

