Optimizing cascades & submodular optimization

Rik Sarkar
Today

• Maximizing cascades
• Other applications of submodularity
• Network flows
• NP completeness
Recap: Selecting nodes to activate

• We have a network of n nodes

• And a budget to activate k nodes

• Which k nodes should we activate to get the largest cascade?

• Hard problem, we want approximate solutions
Recap: Submodular maximization

- Submodular function f:
 - Value added by an item decreases with bigger sets
- Find the set S of size k that maximizes $f(S)$

$$S \subseteq T \implies f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$$
Recap: Approximation

• A simple greedy algorithm:
 • In next round, pick the item that gives the largest increase in value

• For monotone submodular maximization, the greedy algorithm gives \(\left(1 - \frac{1}{e}\right) \) approximation
Cascade

• Cascade function \(f(S) \):

 • Given set \(S \) of initial adopters, \(f(S) \) is the number of final adopters

• We want to show: \(f(S) \) is submodular

• Idea: Given initial adopters \(S \), let us consider the set \(H \) that will be the corresponding final adopters

 • \(H \) is “covered” by \(S \)
Cascade in independent activation model

• If node u activates to use A, then u causes neighbor v to activate and use A with probability $p_{u,v}$

• Now suppose u has been activated

 • Neighbor v will be activated with prob. $p_{u,v}$

 • Neighbor w will be activated with prob. $p_{u,w}$ etc..

• Instead of waiting for u to be activated before making the random choices, we can make the random choices beforehand

• ie. if u is activated, then v will be activated, but w will not be activated… etc
Cascade in independent activation model

- We can make the random choices for u activation beforehand.
- Tells us which edges of u are “effective” when u is “on”
- Similarly for other nodes v, x, y
- We know exactly which nodes will be activated as a consequence of u being activated
- Exactly the same as “coverage” of a sensor network
- Say, c(u) is the set of nodes covered by u.
• We know exactly which nodes will be activated as a consequence of u being activated

• Exactly the same as “coverage” of a sensor network

• Say, $c(u)$ is the set of nodes covered by u.
 - $c(S)$ is the set of nodes covered by a set S
 - $f(S) = |c(S)|$ is submodular
• Remember that we had made the probabilistic choices for each edge uv:

 • With probability $p_{u,v}$ we set the edge to be “active”: if u is activated, v will be activated

 • Let us represent the choices for all edges in the entire network be x

• We showed that given x, the function is submodular

• Now let X be the space of possibilities of all such choices

 • Each element x in X contains choices for all edges

 • In making the random choices beforehand, we had basically fixed x

• Now, we can sum over all possible x, weighted by their probability.
Now, we can sum over all possible x, weighted by their probability.

Since non-negative linear combinations of submodular functions are submodular, the sum is submodular

The approximation algorithm for submodular maximization is an approximation for the cascade in independent activation model with same factor
The linear threshold model

Node compares the fraction of its neighbors activated to a threshold q

Generalization: Each edge has a weight $p_{u,v}$ and total weight for activated items must exceed q
• Modified model (for the proof):

• Node u picks 1 neighbor v and turns on directed edge vu (meaning v influences u)

 • Edge vu is turned on with probability proportional to $p_{u,v}$

 • All other edges are turned off (not used)
Theorem

• Any subset $H \subseteq V$ has the same probability of being covered in
 • Original linear threshold model, and
 • Modified model

• Proof: Omitted

• Ref: Kempe, Kleinberg, Tardos; Maximizing the spread of influence through a social network, SIGKDD 03.
Applications of submodular optimization

• Sensing the contagion
 • Place sensors to detect the spread

• Find “representative elements”: Which blogs cover all topics?

• Machine learning
 • Exemplar based clustering (eg: what are good seeds?)
 • Image segmentation
Sensing the contagion

• Consider a different problem:
• A water distribution system may get contaminated
• We want to place sensors such that contamination is detected

(c) effective placement
(d) poor placement
Social sensing

• Which blogs should I read? Which twitter accounts should I follow?
 • Catch big breaking stories early

• Detect cascades
 • Detect large cascades
 • Detect them early…
 • With few sensors

• Can be seen as submodular optimization problem:
 • Maximize the “quality” of sensing

• Ref: Krause, Guestrin; Submodularity and its application in optimized information gathering, TIST 2011
Representative elements

• Take a set of Big data

• Most of these may be redundant and not so useful

• What are some useful “representative elements”?

 • Good enough sample to understand the dataset
 • Cluster representatives
 • Representative images
 • Few blogs that cover main areas…
Problem with submodular maximization

• Too expensive!

• Each iteration costs $O(n)$: have to check each element to find the best

• Problem in large datasets

• Mapreduce style distributed computation can help

 • Split data into multiple computers

 • Compute and merge back results: Works for many types of problems

• Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular maximization: Finding representative elements in massive data. NIPS 2013.
Projects

• Office hours

• Wednesday 11 nov (tomorrow), 10:00-12:00

• Monday 16 nov, 10:00 - 12:00

• Submission guidelines to be given today (I hope..)
PhD at Edinburgh

• If you are finding the project interesting…

• CDT in datascience:
 • http://datascience.inf.ed.ac.uk/

• CDT in parallelism/systems:
 • http://pervasiveparallelism.inf.ed.ac.uk/

• Other PhD options:
 • http://www.ed.ac.uk/informatics/postgraduate/research-degrees/phd

• For general procedure for applying, see a guideline at
 • http://homepages.inf.ed.ac.uk/rsarkar/positions.html

• Ask any questions..
Network Flows and Cuts

• Network flow problem

• Give an graph (imagine pipes/roads)
 • Nodes s, t
 • Capacity c(e) on each edge e
 • What is the maximum rate of flow from s to t?

• Solution consists of a flow value on each edge that attains max flow from s to t
Network flows

• Solved using Ford-Fulkerson or similar algorithms

• Complexity $\sim O(nm)$ [ie. $O(|V| \times |E|)$]

 • or similar, depending on exact requirements etc

• Too large in large networks
Minimum cuts

• Find the set of edges with smallest capacity that separates s and t
 • Max flow min cut Theorem: The total capacity of this smallest cut is the max flow from s to t.

• The cut capacity function f: flow across a cut
 • Is submodular

• Min cut: Submodular minimization
 • Application: Image segmentation
Complexity classes P, NP, NP-hard
Class P

• Decision problems: A yes or no answer

• Problems that can be solved in polynomial time

• eg:
 • Searching: Does element x exist in array A?
 • Graph connectivity: Is G connected…
Class NP

• Some decision problems do not have known polynomial time solutions
• But given a “yes” answer, the solution can be checked in polynomial time
• Eg.
 • Vertex cover: Is there a subset S of size k in V such that every edge has at least one end point in S?
 • Does the graph contain a clique of size k?
 • Set cover: Suppose $X = \{S_1, S_2, \ldots\}$ is a collection of subsets of U
 • is there a collection of size k that covers all elements of U?
Succinct certificates

• NP problems have succinct certificates — that can be used to check the answer in polynomial time

• E.g.
 • Vertex cover: The solution set S of size k
 • Clique: The clique of size k
 • Set cover the collection of size k that covers V
Problem reduction

• Convert problem 1 to a version of problem 2

• E.g. Vertex cover to set cover
 • Elements $U = E$
 • Collection of subsets: $S_v = \text{Edges on vertex } v$
 • U can be covered by a collection of size k iff E can be covered by a set Y in V

• Note:
 • If we have a solution to Set cover, we can use it to solve vertex cover
 • The conversion from problem 1 to problem 2 is polynomial time
Classes NP-Hard and NP-complete

- A problem X is NP hard, if *any* NP problem can be reduced to X in polynomial time.

- A problem is NP-complete if it is both:
 - In NP
 - and NP-hard
Showing that a problem X is NP-complete

• Show X is in NP
 • Usually easy: Show a succinct certificate

• Showing NP-hardness

• Idea: All NP-complete problems are reducible to each-other!

• So, show that one known NP-complete problem can be reduced to X
Showing that a problem X is NP-complete

- Take Y which is NP-complete
- Show that an instance of Y can be reduced to an instance of X in polynomial time
- And the solution of X can be converted back to a solution of Y in Polynomial time
- Thus, if X has an easy (Polynomial) solution, that can be used to solve NP-hard problem Y
- Implies that X cannot have easy (polynomial) solution!
NP-hardness

• Note that an NP-hard problem need not be a decision problem it can be an optimization problem.

• E.g.
 • Find largest clique
 • Find smallest set cover
 • Find longest path…

• Proving the NP-hardness part is anyway the difficult issue.