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Today

• Maximizing cascades 

• Other applications of submodularity 

• Network flows 

• NP completeness



Recap: Selecting nodes to 
activate 

• We have a network of n nodes 

• And a budget to activate k nodes 

• Which k nodes should we activate to get the largest 
cascade?  

• Hard problem, we want approximate solutions



Recap: Submodular 
maximization

• Submodular function f: 

• Value added by an item 
decreases with bigger sets 

• Find the set S of size k that 
maximizes f(S)

S ✓ T =)

f(S [ {x})� f(S) � f(T [ {x})� f(T )



Recap: Approximation

• A simple greedy algorithm: 

• In next round, pick the item that gives the largest 
increase in value 

• For monotone submodular maximization, the 
greedy algorithm gives           approximation
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Cascade
• Cascade function f(S): 

• Given set S of initial adopters, f(S) is the number 
of final adopters 

• We want to show: f(S) is submodular 

• Idea: Given initial adopters S, let us consider the 
set H that will be the corresponding final adopters 

• H is “covered” by S



Cascade in independent 
activation model

• If node u activates to use A, then u causes neighbor v to activate 
and use A with probability  

• pu,v  

• Now suppose u has been activated 

• Neighbor v will be activated with prob. pu,v  

• Neighbor w will be activated with prob. pu,w etc.. 

• Instead of waiting for u to be activated before making the 
random choices, we can make the random choices beforehand 

• ie. if u is activated, then v will be activated, but w will not be 
activated… etc



Cascade in independent 
activation model

• We can make the random choices for u activation 
beforehand. 

• Tells us which edges of u are “effective” when u is “on” 

• Similarly for other nodes v, x, y …. 

• We know exactly which nodes will be activated as a 
consequence of u being activated 

• Exactly the same as “coverage” of a sensor network 

• Say, c(u) is the set of nodes covered by u.



• We know exactly which nodes will be activated as 
a consequence of u being activated 

• Exactly the same as “coverage” of a sensor 
network 

• Say, c(u) is the set of nodes covered by u. 

• c(S) is the set of nodes covered by a set S 

• f(S) = |c(S)| is submodular 



• Remember that we had made the probabilistic choices for each edge 
uv: 

• With probability pu,v we set the edge to be “active”: if u is activated, 
v will be activated 

• Let us represent the choices for all edges in the entire network  be x 

• We showed that given x, the function is submodular 

• Now let X be the space of possibilities of all such choices 

• Each element x in X contains choices for all edges 

• In making the random choices beforehand, we had basically fixed x 

• Now, we can sum over all possible x, weighted by their probability.



• Now, we can sum over all possible x, weighted by 
their probability. 

• Since non-negative linear combinations of 
submodular functions are submodular, the sum is 
submodular 

• The approximation algorithm for submodular 
maximization is an approximation for the cascade 
in independent activation model with same factor



• The linear threshold model 

• Node compares the fraction of 
its neighbors activated to a 
threshold q 

• Generalization: Each edge has 
a weight pu,v  and total weight 
for activated items must exceed 
q



• Modified model (for the proof):  

• Node u picks 1 neighbor v and turns on directed 
edge vu (meaning v influences u) 

• Edge vu is turned on with probability proportional 
to pu,v 

• All other edges are turned off (not used)



Theorem
• Any subset H ⊆ V has the same probability of being 

covered in  

• Original linear threshold model, and 

• Modified model  

• Proof: Omitted 

• Ref: Kempe, Kleinberg, Tardos; Maximizing the spread of 
infleunce through a social network, SIGKDD 03.



Applications of submodular 
optimization

• Sensing the contagion 

• Place sensors to detect the spread 

• Find “representative elements”: Which blogs cover all 
topics? 

• Machine learning 

• Exemplar based clustering (eg: what are good seeds?) 

• Image segmentation



Sensing the contagion
• Consider a different problem:  

• A water distribution system may get contaminated 

• We want to place sensors such that contamination 
is detected



Social sensing
• Which blogs should I read? Which twitter accounts should I follow? 

• Catch big breaking stories early 

• Detect cascades 

• Detect large cascades  

• Detect them early… 

• With few sensors 

• Can be seen as submodular optimization problem: 

• Maximize the “quality” of sensing 

• Ref: Krause, Guestrin; Submodularity and its application in 
optimized information gathering, TIST 2011



Representative elements
• Take a set of Big data 

• Most of these may be redundant and not 
so useful 

• What are some useful “representative 
elements”?  

• Good enough sample to understand the 
dataset 

• Cluster representatives 

• Representative images 

• Few blogs that cover main areas…



Problem with submodular 
maximization

• Too expensive! 

• Each iteration costs O(n): have to check each element to find the best 

• Problem in large datasets 

• Mapreduce style distributed computation can help 

• Split data into multiple computers 

• Compute and merge back results: Works for many types of 
problems 

• Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular 
maximization: Finding representative elements in massive data. NIPS 
2013.



Projects
• Office hours 

• Wednesday 11 nov (tomorrow), 10:00-12:00 

• Monday 16 nov, 10:00 - 12:00 

• Submission guidelines to be given today (I hope..)



PhD at Edinburgh
• If you are finding the project interesting… 

• CDT in datascience:  

• http://datascience.inf.ed.ac.uk/ 

• CDT in parallelism/systems:  

• http://pervasiveparallelism.inf.ed.ac.uk/ 

• Other PhD options:  

• http://www.ed.ac.uk/informatics/postgraduate/research-degrees/phd 

• For general procedure for applying, see a guideline at 

• http://homepages.inf.ed.ac.uk/rsarkar/positions.html 

• Ask any questions..

http://datascience.inf.ed.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk/
http://www.ed.ac.uk/informatics/postgraduate/research-degrees/phd
http://homepages.inf.ed.ac.uk/rsarkar/positions.html


Network Flows and Cuts
• Network flow problem 

• Give an graph (imagine pipes/
roads) 

• Nodes s, t 

• Capacity c(e) on each edge e 

• What is the maximum rate of 
flow from s to t ? 

• Solution consists of a flow value 
on each edge that attains max 
flow from s to t



Network flows

• Solved using Ford-Fulkerson or similar algorithms 

• Complexity ~ O(nm) [ie. O(|V| * |E|)] 

• or similar, depending on exact requirements etc 

• Too large in large networks



Minimum cuts
• Find the set of edges with smallest 

capacity that separates s and t 

• Max flow min cut Theorem: The 
total capacity of this smallest cut 
is the max flow from s to t. 

• The cut capacity function f: flow 
across a cut 

• Is submodular 

• Min cut: Submodular minimization 

• Application: Image segmentation



Complexity classes P, NP, 
NP-hard



Class P
• Decision problems: A yes or no answer 

• Problems that can be solved in polynomial time 

• eg: 

• Searching: Does element x exist in array A? 

• Graph connectivity: Is G connected…



Class NP
• Some decision problems do not have known polynomial time solutions 

• But given a “yes” answer, the solution can be checked in polynomial 
time 

• Eg.  

• Vertex cover: Is there a subset S of size k in V such that every edge 
has at least one end point in S? 

• Does the graph contain a clique of size k ? 

• Set cover: Suppose X = {S1, S2, …} is a collection of subsets of U 

• is there are collection of size k that covers all elements of U?



Succinct certificates
• NP problems have succinct certificates — that can 

be used to check the answer in polynomial time 

• E.g. 

• Vertex cover: The solution set S of size k 

• Clique: The clique of size k 

• Set cover the collection of size k that covers V



Problem reduction
• Convert problem 1 to a version of problem 2 

• E.g. Vertex cover to set cover 

• Elements U = E 

• Collection of subsets: Sv = Edges on vertex v 

• U can be covered by a collection of size k iff E can be covered by a 
set Y in  V 

• Note: 

• If we have a solution to Set cover, we can use it to solve vertex 
cover 

• The conversion from problem 1 to problem 2 is polynomial time



Classes NP-Hard and NP-
complete

• A problem X is NP hard, 
if any NP problem can be 
reduced to X in 
polynomial time 

• A problem is NP-
complete if it is both: 

• In NP 

• and NP-hard



Showing that a problem X is 
NP-complete

• Show X is in NP 

• Usually easy: Show a 
succinct certificate 

• Showing NP-hardness  

• Idea: All NP-complete problems 
are reducible to each-other! 

• So, show that one known NP-
complete problem can be 
reduced to X



Showing that a problem X is 
NP-complete

• Take Y which is NP-complete 

• Show that an instance of Y can be 
reduced to an instance of X in polynomial 
time 

• And the solution of X can be converted 
back to a solution of Y in Polynomial time 

• Thus, if X has an easy (Polynomial) 
solution, that can be used to solve NP-
hard problem Y 

• Implies that X cannot have easy 
(polynomial) solution!



NP-hardness
• Note that an NP-hard problem need not be a decision 

problem it can be an optimization problem 

• E.g. 

• Find largest clique 

• Find smallest set cover 

• Find longest path… 

• Proving the NP-hardness part is anyway the difficult issue


