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• No Class on Friday 23rd October!

!

• Projects will be announced later today



Recap: HITS algorithm
• Evaluate hub and authority scores 

• Apply Authority update to all nodes:  

• auth(p) = sum of all hub(q) where q -> p is a link 

• Apply Hub update to all nodes: 

• hub(p) = sum of all auth(r) where p->r is a link 

• Repeat for k rounds



Adjacency matrix



Hubs and authority scores

• Can be written as vectors h and a 

• The dimension (number of elements) of the vectors 
are n



Update rules 
• Are matrix multiplications: 

•  



• Hub rule for i : sum of a-values of nodes that i 
points to:   

!

!

• Authority rule for i : sum of h-values of nodes that 
point to i: 



Iterations
• After one round: 

!

!

!

!

• Over k rounds: 



Convergence
• Remember that h keeps increasing 

• We want to show that the normalized value 

!

!

• Converges to a vector of finite real numbers as k goes 
to infinity 

• If convergence happens:



Eigen values and vectors

• Implies that for matrix  

• c is an eigen value, with  

•         as the corresponding eigen vector



Proof of convergence to 
eigen vectors

• Theorem: A symmetric matrix has orthogonal eigen 
vectors. (see sample problems from lecture 1) 

• They form a basis of n-D space 

• Any vector can be written as a linear combination 

•                  is symmetric



• Suppose sorted eigen values are:  

!

• Corresponding eigen vectors are: 

!

• We can write any vector x as  

!

• So:  



• Over k iterations:  

!

• For hubs:  

• So:  

• If                  , only the first term remains.  

• So,           converges to 



Properties
• The vector q1z1 is a simple multiple of z1  

• A vector essentially similar to the first eigen 
vector 

• Therefore independent of starting values of h 

• q1 can be shown to be non-zero always, so the 
scores are not zero 

• Authority score analysis is analogous



Pagerank Update rule as a 
matrix derived from adjacency



• Scaled pagerank:  

!

• Over k iterations: 

!

• Pagerank does not need normalization.  

!

• We are looking for an eigen vector with eigen 
value=1





• For matrix P with all positive values, Perron’s 
theorem says: 

• A unique positive real valued largest eigen value 
c 

• Corresponding eigen vector y is unique and has 
positive real coordinates 

• If c=1, then          converges to y



Random walks

• A random walker is moving along random directed 
edges 

• Suppose vector b shows the probabilities of walker 
currently being at different nodes 

• Then vector         gives the probabilities for the next 
step



Random walks
• Thus, pagerank values of nodes after k iterations is 

equivalent to: 

• The probabilities of the walker being at the nodes 
after k steps 

• The final values given by the eigen vector are the 
steady state probabilities 

• Note that these depend only on the network and 
are independent of the starting points



History of web search
• YAHOO: A directory (hierarchic list) of websites 

• Jerry Yang, David Filo, Stanford 1995 

• 1998: Authoritative sources in hyperlinked environment 
(HITS), symposium on discrete algorithms 

• Jon Kleinberg, Cornell 

• 1998: Pagerank citation ranking: Bringing order to the web 

• Larry Page, Sergey Brin, Rajeev Motwani, Terry 
Winograd, Stanford techreport



Spectral graph theory

• Undirected graphs 

• Diffusion operator 

• Describes diffusion of stuff — step by step 

• Stuff at a vertex uniformly distributed to 
neighbors — in every step



Laplacian matrix

• L = D - A 

• A is adjacency matrix 

• D is diagonal matrix of degrees 



Example



Properties
• L is symmetric 

• L is positive semidefinite (all eigen values are >= 0 ) 

• Smallest eigen value   

• Smallest non-zero eigen value: spectral gap 

• Determines the speed of convergence of random walks 
and diffusions 

• Number of zero eigen values is number of connected 
components
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