
Spectral Graph theory
Rik Sarkar

Course

• No class on Friday 23rd.

• Piazza forum to discuss projects, exercises,
topics…

• https://piazza.com/ed.ac.uk/fall2015/infr11124

• Deadline for project selection?

https://piazza.com/ed.ac.uk/fall2015/infr11124

• Preliminary plan deadline: approx Nov 5 (not
graded)

• Preliminary plan/proposal (short document)

• Make sure you understand the problem

• Have the data

• Have a plan of approach

Spectral methods
• Understanding a graph using eigen values and eigen

vectors of the matrix

• We saw:

• Ranks of web pages: components of 1st eigen vector of
suitable matrix

• Pagerank or HITS are algorithms designed to compute the
eigen vector

• Today: other ways spectral methods help in network
analysis

Laplacian

• L = D - A

!

!

• An eigen vector has one value for each node

• We are interested in properties of these values

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775

Application 1: Drawing a
graph

• Problem: Computer does not know
what a graph is supposed to look like

• A graph is a jumble of edges

• Consider a grid graph:

• We want it drawn nicely

Graph embedding
• Find positions for vertices of a graph in low dimension

(compared to n)

• One eigen vector gives x values of nodes

• Other gives y-values of nodes … etc

• Preserves some properties of the graph e.g. approximate
distances between vertices

• Useful in visualization

• Finding approximate distances

Intuitions: the 1-D case
• Suppose we take the jth eigen vector of a chain

• What would that look like?

• We are going to plot the chain along x-axis

• The y axis will have the value of the node in the jth
eigen vector

• We want to see how these rise and fall

Observations

• j = 0

• j=1

• j=2

• j =3

• j = 19

For All j

Observations
• In Dim 1 grid:

• v[1] is monotone

• v[2] is not monotone

• In dim 2 grid:

• both v[1] and v[2] are monotone in
suitable directions

• For low values of j:

• Nearby nodes have similar values

• Useful for embedding

Application 2: Coloring
• Coloring: Assign colors to vertices,

such that neighboring vertices do
not have same color

• E.g. Assignment of radio
channels to wireless nodes. Good
coloring reduces interference

• Idea: High eigen vectors give
dissimilar values to nearby nodes

• Use for coloring!

Application 3: Cuts/
segmentation/clustering

• Find the smallest ‘cut’

• A small set of edges
whose removal
disconnects the graph

• Clustering, community
detection…

Clustering/community
detection

• v[1] tends to stretch the narrow
connections: discriminates different
communities

Clustering: community
detection

• More communities

• Need higher dimensions

!

• Warning: it does not always
work so cleanly

• In this case, the data is very
symmetric

Image segmentation

v[1]

Shi & malik ’00

weight(i, j) ⇡ e�(pxi�pxj)
2

Laplacian matrix
• Imagine a small and different quantity of heat at each

node (say, a metal mesh)

• we write a function u: u(i) = heat at i

• This heat will spread through the mesh/graph

• Question: how much heat will each node have after a
small amount of time?

• “heat” can be representative of the the probability of a
random walk being there

Heat diffusion

• Suppose nodes i and j are neighbors

• How much heat will flow from i to j?

Heat diffusion
• Suppose nodes i and j are neighbors

• How much heat will flow from i to j?

• Proportional to the gradient:

• u(i) - u(j)

• this is signed: negative means heat flows into i

Heat diffusion
• If i has neighbors j1, j2….

• Then heat flowing out of i is:

• u(i) - u(j1) + u(i) - u(j2) + u(i) - u(j3) + …

• degree(i)*u(i) - u(j1) - u(j2) - u(j3) - ….

• Hence L = D - A
2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775 =

2

664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

775�

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775

Laplacian

• The net heat flow out of nodes in a time step

• The change in heat distribution in a small time step

• The rate of change of heat distribution

L(u) ⇡ @u

@t

Heat flow

• Will eventually converge of
v[0] : the zeroth eigen
vector, with eigen value

• v[0] is a constant: no
more flow!

v[0] = const

�0 = 0

Laplacian
• Changed represented by L on any

input vector can be represented by
sum of action of its eigen vectors
(we saw this last time for MMT)

• v[0] is the slowest component of
the change

• With multiplier

• v[1] is slowest non-zero
component

• with multiplier

�0 = 0

�1

Spectral gap

• Determines the overall speed of change

• If the slowest component v[1] changes fast

• Then overall the values must be changing fast

• Fast diffusion

�1 � �0

Application 4: isomorphism
testing

• Eigen values different implies graphs are different

• Though not necessarily the other way

Spectral methods
• Wide applicability inside and outside networks

• Related to many fundamental concepts

• PCA

• SVD

• Random walks, diffusion, heat equation…

• Results are good many times, but not always

• Relatively hard to give provable properties

• Inefficient: eig. computation costly on large matrix

• (Somewhat) efficient methods exist for more restricted problems

• e.g. when we want only a few smallest/largest eigen vectors

