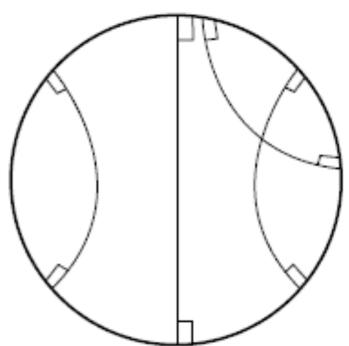
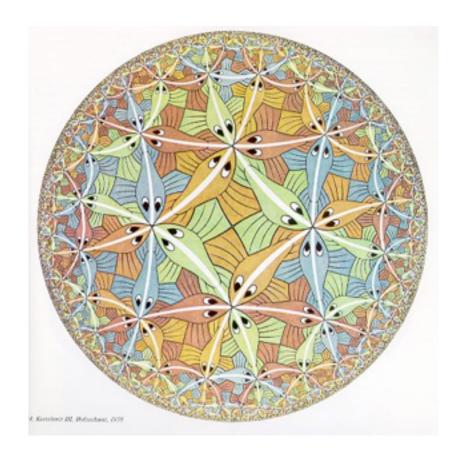
Network Curvature, friendship paradox and dispersion

Rik Sarkar

Recap: Hyperbolic distances

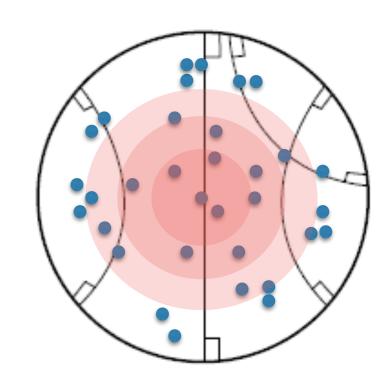
- Points in a disk
 - Shortest paths along circular curves bent toward the center
 - Similar to internet paths being bent toward the core
 - Distances look cramped close to the boundaries





Internet emulates hyperbolic metrics

Shavitt, Tankel. ACM ToN 2008.



Hyperbolic model for networks

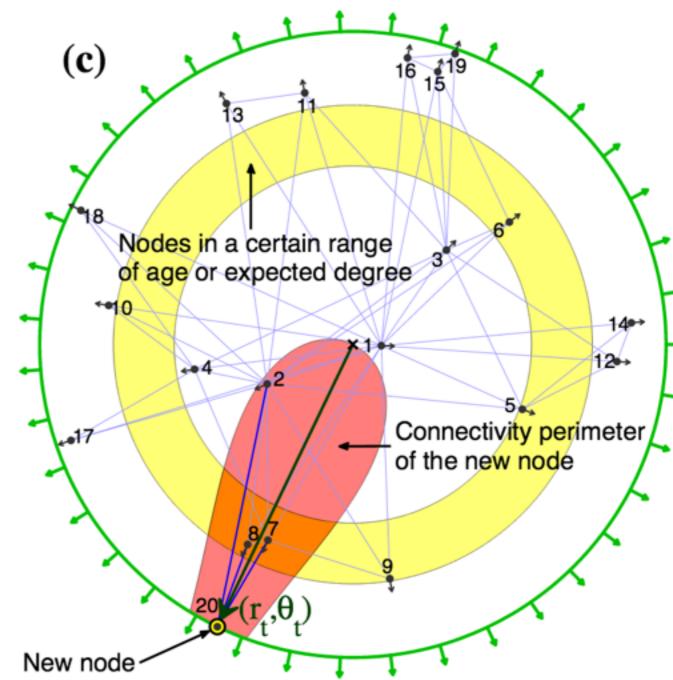
- People connect to popular "central" nodes
 - Preferential attachment. Hubs. Cause small diameters.
- People connect to other "similar" nodes
 - Similar in location, or interests, or communities
 - Similar means small distance in some measure
- Preferential attachment does not model this well
 - Cannot model the clustering properties

Popularity/similarity model

- Put all nodes on the plane at polar coord: (r, θ)
- Popularity: Distance from the center
 - Like preferential attachment, earlier nodes are popular
 - If a node appears at time t, its distance from center is r = ln t
- Interests/features for similarity: Represented by angle
 - 0
 - Two nodes a,b are similar if $|\theta_a \theta_b|$ is small.

Edge attachments

- A new node appears at time t
 - Sets r = In t
 - Sets θ = random
 - It connects to the k nearest nodes in hyperbolic distance
- Central nodes are older and higher degree



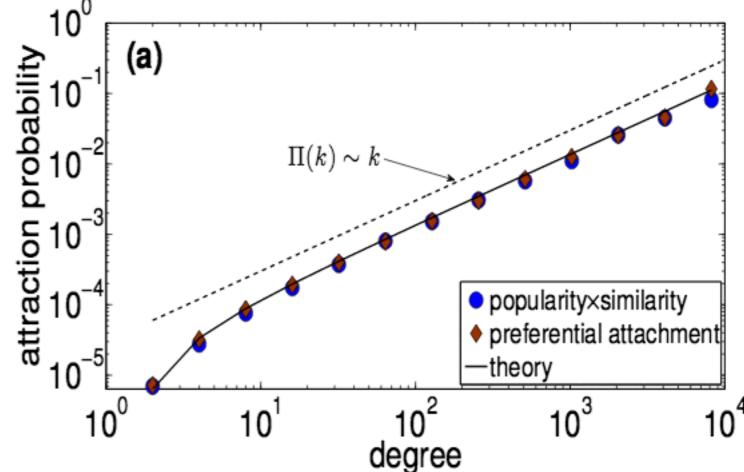
Properties

Creates power law distribution

Creates strong clustering

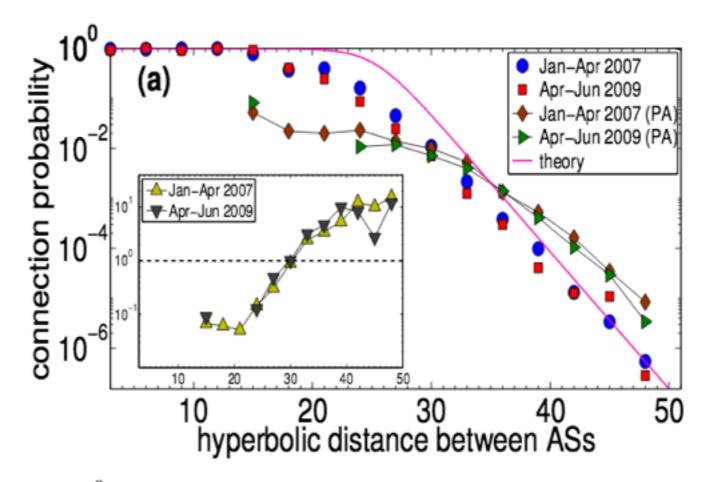
 Different from pref. attachment

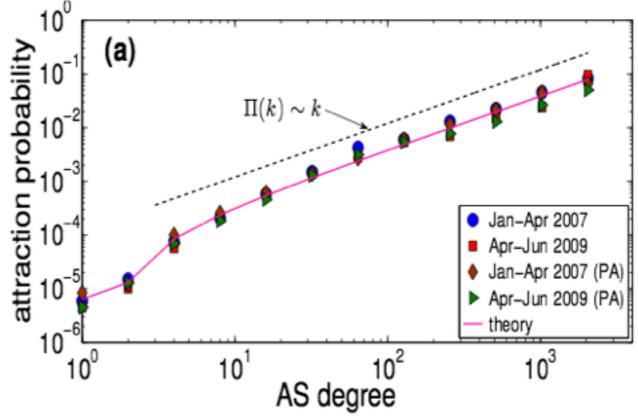
More realistic in real networks



Modeling the internet

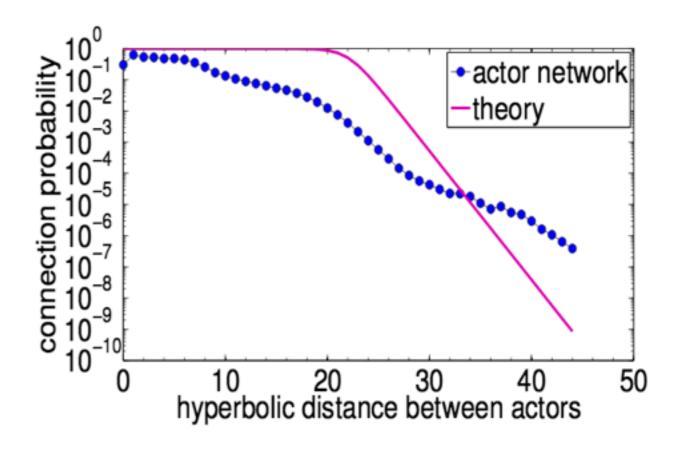
- A suitable hyperbolic embedding gives very good model of connection probabilities
- Similar results in other power law networks





Actor networks

Does not work equally well



• Papdopoulos et al. Nature 2012.

Hyperbolic geometry

- Useful in modeling metrics with exponential growth (number of nodes within distance x)
 - E.g. balanced binary tree
 - Many parameters may have such properties
 - Position in a hierarchy
 - Topological types of paths in a domain
 - Subsets of items

Few other things

Friendship paradox

- Your friends have more friends than you do!
- Are you less social than others?

Friendship paradox

- The paradox:
 - If you ask everyone to report their degrees, you get the average degree
 - If you ask everyone to report the average degrees of their friends and take the averages of all,
 - you get more than the overall average degree!
- Most of us have some popular friends (hence they are popular)
 - If you pick a random friend of a random person, (random edge)
 - This friend is relatively likely to be popular, since popular nodes have more edges

Friendship paradox

- Average degree of nodes:
 - A node with degree d(v) contributes d(v) once
- Average degree of a friend:
 - Each person picks a friend and counts degree
 - A node with degree d(v) contributes d(v) times, with total contribution d(v)²
 - A few nodes with relatively high d(v) can skew the count
 - https://en.wikipedia.org/wiki/Friendship_paradox
 - S. L. Feld, Why your friends have more friends than you do, American journal of sociology, 1991

Identify spouses or romantic partners

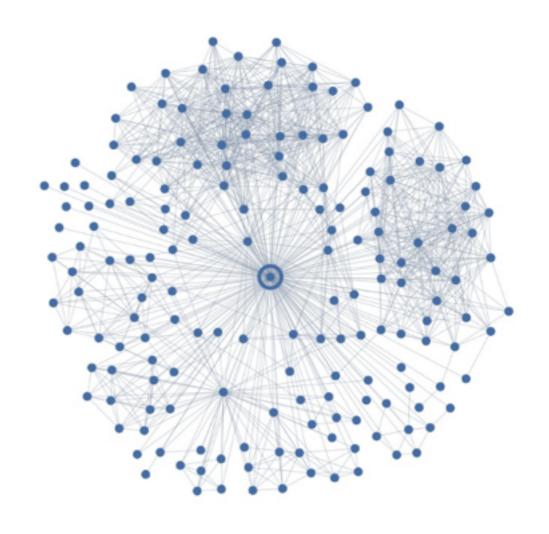
- Suppose you have the facebook graph
- Only the graph and nothing else
- Can you identify which edges correspond to spouses or romantic partners?

Identify spouses or romantic partners

Identify spouses or romantic partners

- Tie strengths are important
- Romantic ties tend to be of high strength, more likely to transmit information
- Do you expect romantic links to have high embeddedness (number/fraction of common friends)?

- People have clusters of friend circles
- Work, school, college, hobbies
- Edges in these have high embeddedness, even if they are not strong friends



- Spouses usually know some friends in each-others different circles
 - The edge does not have high embeddedness
 - Compared to links in groups such as school/ college
 - But, it has a dispersed structure:
 - There are several mutual friends, but the mutual friends are not well connected among themselves

Dispersion

- dispersion between u,v
- Notations:
 - C(u,v): Common friends of u, v
 - G_u: Subgraph induced by u and all neighbors of u
 - d_{uv}: distance measured in G_u-{u,v}: Without using u or v

$$disp(u,v) = \sum_{s,t \in C(u,v)} d_{uv}(s,t)$$

Dispersion

$$disp(u,v) = \sum_{s,t \in C(u,v)} d_{uv}(s,t)$$

- Increases with more mutual friends
- Increases when these friends are far in the graph
- It is possible to use other distance measures
- Good results with d = 1 if no direct edge, 0 otherwise

Normalized dispersion

- Use norm(u,v) = disp(u,v)/embed(u,v)
 - 48% accuracy
- Apply recursively, to weigh higher nodes with high dispersion
 - Gives 50.5% accuracy
 - 60% accuracy for married couples
- High accuracy considering hundreds of friends
- Works better than usual machine learning based on posts, visits, photos etc features
 - Best results with combination of features

 Backstrom and Kleinberg. Romantic partnerships and dispersion of social ties, ACM CSCW 2014