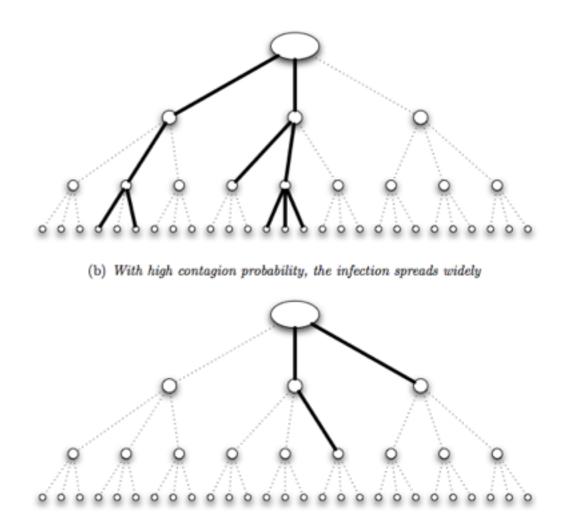
Diffusion and Epidemics

Rik Sarkar


Spread of diseases

- Pattern depends on network structure
- e.g. spread of flu
- Network of people
- Network of airlines

- Different from idea/innovation contagion
 - Does not need a "decision"
 - Does not need multiple support
 - Infectious disease passes easily with some probability

- Suppose everyone meets k new people and infects each with probability p
- That is, they infect R = kp people on average

- If p is high
 - The disease will persists through rounds
- If p is low, it will die out after some rounds

Property

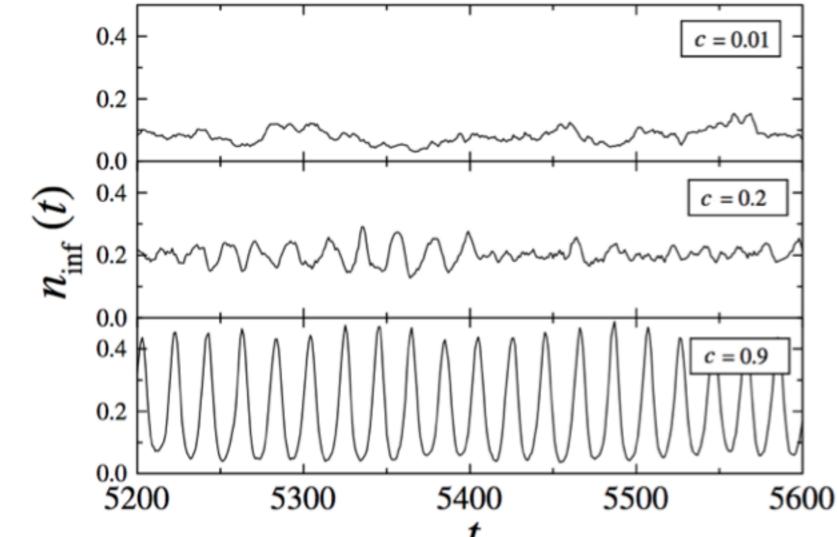
- When R > 1 number of infected people keeps increasing
 - Outbreak
- When R < 1 Number of infected people decreases
 - Disease dies out
- Phase transition at R = 1
- assuming there are enough "new" people supply to meet
- Generally true in the initial stages

- Around R = 1: small efforts can have large effects on epidemic
 - Awareness causing slight decrease in p
 - Quarantine/fear causing slight decrease in k

SIR Model

- Susceptible (initially)
- Infectious (after being infected)
 - While Infectious, it can pass disease to each neighbor in each step with prob. p
- Removed (after given duration as Infectious)
 - Immune/dead

SIS model


- No "Removed" state. Susceptible follows Infectious
 - Eg. flu

SIRS model

- Susceptible
- Infectious
- Recovered (immune)
- Susceptible

SIRS oscillations in Watts-Strogatz Small worlds

- Nodes connected to few nighbors on a ring
- Fraction c of links modified to connect to random nodes

Epidemic or gossip algorithm

- Emulates the spread of epidemic or a rumor in a network
- A node speaks to a random neighbor to spread the rumor message
- Useful for spreading information in computer networks

Spreading a message via gossip

- Complete graph: Anyone can call anyone
- In each round, anyone with the rumor calls one node and passes the rumor

Theorem

- Everyone gets the message in O(log n) rounds
- Idea:
 - n/3 nodes get the message in log n rounds
 - Current number of infected nodes m < n/3
 - Probability that a call goes to a new node is 2/3
 - Number of calls to new nodes: 2m/3
 - Probability of a collision at the new node is 1/(n-m)
 - $O(m^2)$ possible pairs for collision
 - Max possible collisions: $\frac{m^2}{2(n-m)} \leq \frac{m^2}{2} \cdot \frac{1}{2m} = \frac{m}{4}$
 - Number of newly infected nodes at least $\frac{2m}{2} \frac{m}{4} = \frac{5m}{12}$

- while m < n/3
 - m grows to m(1 + 5/12) = 17m/12 every round
 - m grows to n/3 in O(log n) rounds
- After m> n/3
 - Probability that a node is not called in 1 round is

$$(1 - \frac{1}{n})^{\frac{n}{3}} \le e^{\frac{-1}{n} \cdot \frac{n}{3}} = e^{-1/3}$$

- Probability that 1 or more nodes are not called after O(log n) rounds
 - Less thar $1/n^c$, where c depends on the constant in the O

• See Kempe 11, chapter 9.

Application

- In a computer network (imagine wireless network)
- Spreading a piece of information
- Naive method: A flood: a node calls all its neighbors to send message
 - Wasteful: since many nodes can have common nearby neighbors, this wastes messages
 - Better to do it as one neighbor per round
 - Still spreads slowly...
 - At least \sqrt{n} in a grid of n nodes

Geographic gossip in wireless networks

- Imagine nodes on a plane
- Instead of only sending messages to neighbors
 - Send to nodes at random (assume there is some routing mechanism in place)
 - Easily reaches far away nodes
 - Faster: O(log n) rounds: O(n log n) messages
 - but the routing costs more messages:
 - \sqrt{n} hops on average per message
 - $n\sqrt{n}\log n$ total transmissions

Spread in small world distributions

- Instead send message to a random node
 - Picked according to a small world-like distribution
 - Picking a node at distance d with probability 1/d³
 - Note the slight difference in exponent (3 instead of 2)
 - Short paths are more common in these distributions
 - The average message cost is O(poly(log n))
 - Still there are enough long messages spreading the message to far away regions
- Kempe, Kleinberg, Demers; Spatial gossip and resource location protocols STOC 2001

Advantages of gossip

- Simple to implement
- Robust a Igorithm
 - A node failure does not stop the computation
 - Easy to add nodes to the system
 - At the cost of a logarithmic factor of increased costs

Averaging gossip

- Suppose the nodes all have a "value"
- And we wish to compute a linear function of these values
- E.g. the average

Protocols

- The push-sum protocol
 - In every round
 - Every node takes a fraction of its value and sends to a random neighbor
 - It adds all received values to its current value
- The pairwise averaging protocol
 - In every round, a node talks to one other random neighbor
 - Both nodes set their values to the average of the two

Gossip averaging protocols

- On a complete graph
 - Both protocols converge to the average fast
 - O(log n) rounds
- On small world graphs/small world distributions
 - Convergence not known